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Preface

These notes are for a series of lectures at the University of Idaho during the spring semester of
2025. The main source is the book [10] by Tennison called Sheaf Theory. The last update of the
notes was on April 23, 2025.






Conventions

In these notes the formal definition of a function is as follows: A function is an ordered
triple (X, Y, R) of sets such that: R € X X Y; if x € X, then there exists y € Y such that (x,y) € R;
if (x,y),(x,2) € R, then y = z. Thus, given a set Y, there exists exactly one function from the
empty set X = () to Y, and this function is (0, Y, 0) (because @ X Y = 0); we refer to this function
as the empty function.






Chapter 1

Category theory

1.1 Categories

Suppose that we are given

* a collection of objects Ob(C);
* for any two objects A, B € Ob(C), a set Mor(A, B) = More (A, B);
* and for any three objects A, B, C € Ob(C) a function

o : Mor(B,C) x Mor(A, B) — Mor(A, C).

We say that this structure is a category, or more briefly, that C is a category, if the following axioms
are satisfied:

(a) LetA,B,A’, B’ € Ob(C). If A # A’ or B # B’, then Mor(A, B) and Mor(A’, B’) are disjoint.
(b) For every A € Ob(C) there exists idy € Mor(A, A) such that if B € Ob(C) and f €
Mor(A, B), then
foida=f,
and if B € Ob(C) and g € Mor(B, A), then

idgog=g.
(c) IfA,B,C,D € Ob(C), and f € Mor(A, B), g € Mor(B,C), and h € Mor(C, D) then
(hog)of=ho(gof).

We note that if C is a category, and A, B € Ob(C), then it may be the case that Mor(A, B) = 0 (the
empty set). Given a category C, we will refer to the elements of Mor(A, B) for A, B € Ob(C) as
morphisms. Let A, B € Ob(C), and let f € Mor(A, B). We say that f is an isomorphism if there
exists g € Mor(B, A) such that g o f =id4 and f o g = idg. We say that f is a monomorphism
if, for all C € Ob(C) and g,h € Mor(C,A), if fog = f o h, then g = h. We say that f is an
epimorphism if, for all C € Ob(C) and g,h € Mor(B,C),if go f = ho f, then g = h. Some
important categories are:
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Set, the category of sets.

AG, the category of abelian groups.

Ring, the category of commutative rings.

1Mod (R), the category of R-modules, where R is a commutative ring.
Let C; and C; be categories. We say that C; is a subcategory of C;, and write C; C C, if

(a) we have Ob(C;) c Ob((,);
(b) for any two objects A, B € Ob(C;) we have More, (A, B) € More, (A, B);
(c) and for any three objects A, B, C € Ob(C), the diagram

More, (A, B) x More, (B, C) —> More, (A, C)

| l

More, (A, B) x More, (B, C) = More, (A, C)

commutes.
Evidently,

Ring
A6 C Set
1Mod(R)

1.2 Functors

Let A and B be categories. A covariant functor is two functions, which we refer to with the same
name,

Ob(7) -5 Ob(®),
{morphisms of A} LN {morphisms of B},

such that:

(a) If A, B € Ob(A), and f € Mor(A, B), then F(f) € Mor(F(A), F(B)).
(b) For all objects A of A, F(ida) = idf(a).
(c) If A,B,C € Ob(A), and f € Mor(A, B) and g € Mor(B, C), then

F(go f)=F(g)oF(f).
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We also define an analogous concept which reverses the direction of morphisms. We define a
contravariant functor to be two functions, which we refer to with the same name,

Ob(A) — Ob(B),
{morphisms of A } R {morphisms of B},
such that:

(a) If A, B € Ob(A), and f € Mor(A, B), then F(f) € Mor(F(B), F(A)).
(b) For all objects A of A, F(ids) = idp(4).
(¢c) If A,B,C € Ob(A), and f € Mor(A, B) and g € Mor(B, C), then

F(gof)=F(f)oF(g).

1.3 Direct limits

Let A be a category. Let I be a set with a partial order < (this means that < is a binary relation
on [ that is reflexive, antisymmetric, and transitive). Assume further that / is directed, i.e., for
every i, j € I there exist k € I such thati < k and j < k. Assume that we are given A; € Ob(A)
fori € I, and for every pair i, j € I withi < j, a morphism
Pij
A —5 A;.

To avoid excessive notation, we will often not mention the name of the morphism p;; and instead
indicate such morphisms with an arrow. We say that the A; and the morphisms p;; are a direct
system in A if the following hold:

(a) A; — A; is the identity for all i € I;

(b) ifi,j,k € I withi < j < k, then the following diagram commutes:

A ——— A;
A

Assume that (A;);e; is a direct system in A. A direct limit of this direct system is an
object A € Ob(A) along with a morphism

A,‘ — A
for each i € I such that:

(a) Foralli,j € I withi < j the diagram
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A; Aj
A
commutes;
(b) if B € Ob(A) and
Ai el B
for i € I are morphisms such that
A; Y

N/

commutes for i, j € [ withi < j, then there exists a unique morphism
A— B

such that

A

.

oy —

commutes for all i € 1.

We refer to (b) of the definition of a direct limit as the universal property of lim A;.

Lemma 1.3.1. Let A be a category. Let (A;);c; be a direct system in A, and assume that A and B
are direct limits of this direct system. Then there exists a unique isomorphism

A— B

such that

A;

7\

A—— B
commutes for all i € I.

Proof. Since A is a direct limit of (A;);e; there exist a unique morphism A — B such that

Ai—>

N
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commutes for all i € /. It remains to prove that A — B is an isomorphism. Since B is also a direct
limit of (A;);e; there exists a morphism B — A such that

Al' ——> B
A
commutes for all i € 1. It follows that
Af —— A Ai —— B
B and A
A B

commute for all i € 1. Since the same diagrams with
A—>B—>A and B—>A—>B (1.1)

replaced with the identity morphisms also commute, the uniqueness property in the definition
of a direct limit implies that the compositions in (1.1) are the identity morphisms on A and B,
respectively; thus, the morphism A — B is an isomorphism. O

If (A;);es is a direct system in A, and A € Ob(.A) is a direct limit of (A;);cs, then we will write
lim Al' =A.
Theorem 1.3.2. Let A be the category Set, A6, Ring, or 1Mod(R) where R is a commutative
ring. Every direct system in A has a direct limit.

Proof. Let (A;);e; be a direct system in A. Then every object A; for i € [ is a set, and we may
assume that these sets are mutually disjoint. Define

x=| A,
i€l
the disjoint union of all the sets A; for i € I. We define a relation ~ on X in the following way.
Leta,b € X, and leti, j € I be such thata € A; and b € A;. We then define a ~ b if and only if
there exists k € I such thati < k, j < k, and p;x(a) = p;r(b). It is straightfoward to verify that ~

is reflexive, antisymmetric, and transitive, and is thus an equivalence relation. We now define A to
be the set of equivalence classes determined by ~:

A=X/~.

If a is in X, then we write the equivalence class determined by a as [a].
Assume first that A = Set. Then A is an object of A. We define, fori € I,

A2 A

by pi(a) = [a] fora € A;. Leti, j € I withi < j; we need to see that
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commutes. Let a € A;. Then

pj(pij(a)) = [pij(a)] and  p;(a) = [a].

Since j < jandi < j, and also p;;(a) = p;j(pij(a)), we have by definition a ~ p;;(a). It follows
that p;(p;;(a)) = pi(a), as desired. Next, assume that B € Ob(Sef) and, fori € I,

are such that

commutes for i, j € I withi < j. Define
A5 B

by a([a]) = «a;(a) for [a] € A, where i is the unique element of / such that a € A;. We claim
that « is well-defined. To see this, assume thati,j € I,a € A;, b € Aj,and a ~ b, i.e., [a] = [b].
Since a ~ b, there exists k € I such thati < k, j < k, and p;x(a) = p;x(b). Then

pik(a) = pjk(b)
ai(pir(a)) = ax(pjk (D))
a;(a) = a;(b).

It follows that « is well-defined. It is evident from the definition of « that the diagram

A -2 A

a
¢ 1%

/4|

B

commutes for every i € /. Finally, assume that § : A — B is another morphism such that

f

A;

a;

—
=

ool
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commutes for all i € 1. We need to prove that 8 = @. Let [a] € A, and let i € I be the unique
element of / such that a € A;. Then

B(la]) = B(pi(a))

= a;(a)

= a([a]).

It follows that 8 = @. We conclude that A is a direct limit of (A;);e;.

Now assume that A = A 6. We define an addition on A as follows. Leta,b € X, andleti, j € I
be such that a € A; and b € A;. Since the set I is directed, there exists £ € I such thati < ¢
and j < . We define

[a] + [b] = [pic(a) + pje(b)].

We claim that this addition is well-defined. Assume that [a] = [a’] and [b] = [b’] for some a’, b" €
X, thati’, j € I are such thata’ € A and b’ € A;», and that £’ € I is such that i’ < ¢’ and j” < ¢'.
We need to prove that

pic(a) +pje(b) ~ pire(a’) + pjre (D), (1.2)
or equivalently, there exists ¢ € I such that £ < t, ¢’ < ¢, and

pu(pic(a) + pje(b)) = pei(pre(a’) + pye (). (1.3)

Since a ~ a’ and b ~ b’, there exist r,s € I suchthati <r,i’ <r,j <s,j <s,and

pir(a) = pry(a’) and pjs(b) = pj’s(b/)- (1.4)

Letr € I besuchthatr <fands <t and also £ <t and ¢’ < ¢. Then (1.4) implies that

pir(a) = pi¢(a’) and pji(b) = Pj’t(bl)-

Hence,

pir(a) +pji(b) = pi(a’) + Pj’t(b,),
pupic(a) + papjc(b) = peipie(a’) + peipjre (D),
pe(pic(a) + pje(b)) = pei(pire(a’) + pjre(b)).

This is (1.3). It follows that the addition we have defined on A is well-defined. It is straightforward
to verify that this addition is associative and commutative. If i € I, then we denote the additive
identity in A; by 0;. Leti,j € I. Let £ € I be such thati < £ and j < ¢. Then

pie(0;) =07 = pj¢(0;)

because p;¢ and p j, are homomorphisms. It follows that 0; ~ 0;. We now define 0 € A by 0 = [0;];
this definition does not depend on i. It is easy to verify that O is an additive identity for A. Thus, A
is an abelian group. We define the homomorphisms p;: A; — A for i € [ exactly as in the
case A = Set. Itis straightforward to verify that these homomorphisms are homomorphisms, and,
arguing as in the case A = Set, that A is a direct limit of (A;);e;-

The cases A = Ring and A = 1Mod(R) are similarly treated, and we omit the proofs. O
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Lemma 1.3.3. Let A be the category Set, A6, Ring, or 1Nlod (R) where R is a commutative ring.
Let (A;)ier be a direct system in A. Let A € Ob(A), and assume that for eachi € I, p;: A; — A

is a morphism such that
Pij

N/

A

A;

Aj

commutes for alli, j € I withi < j. Assume additionally the following two conditions:

(a) Forevery a € A there existsi € I and x € A; such that p;(x) = a.

(b) Foralli,j €l, x € A;, andy € Aj, we have p;(x) = p;(y) if and only if there exists k € 1
such thati < k, j < k, and pix(x) = pjr(y).

Then A is a direct limit of the direct system (A;)ic;. Moreover, if lim A; is as in the construction in
—

the proof of Theorem 1.3.2, then the canonical isomorphism
limA; — A
sends [a] € lim A; to p;(a) ifi € I is such that a € A;.

Proof. To prove that A is a direct limit of the direct system (A;);¢;, it will suffice to verify, for A,
the universal property from the definition of a direct limit. Assume that B € Ob(4), and for
alli € I, @;: A; — B are morphisms such that

A, _ P A
i
vz
B

commutes for i, j € I withi < j. Define «: A — B in the following way. Let a € A. By (a),
there exist i € I and x € A; such that p;(x) = a. Now define a(a) = a;(x). We claim that « is
well-defined. Assume thati,j € I, x € A;, and y € A; are such that p;(x) = p;(y) = a. By (b),
there exists k € I such thati < k and j < k. and p;x(x) = p;«x(y). Hence,

@;(x) = ax (pir (%)) = ar(pjr(y)) = a;(y).

This proves that @ is well-defined. We claim that « € Mor(A, B). This is clear if A = Set.
Assume that A = A6. Leta,b € A,andleti,j € I, x € A;,and y € A; be such that p;(x) = a
and p;(y) = b. Let k € I be such thati < k and j < k. Then

a = pi(x) = pr(pik(x)),  b=pi(y)=plpj(y)),

so that
a+b=pr(pix(x)+pjx(y)).

Hence,

a(a+b) =ai(pi(x) +pjr(y))
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= ax (pir (%)) + ax (pjk (y))
= a;(x) + a;(y)
=a(a) +a(b).

It follows that @ € Mor(A, B). The argument that @ € Mor(A, B) if A = Ring or A = NMod(R)
for a commutative ring R is similar. Next, leti € /. To see that

A -2 A

a
¢ 1%

/4|

B

commutes, let x € A;. Then, by definition, @(p;(x)) = @;(x). Thus, the diagram commutes.
Similarly, we see that if @’ € Mor(A, B) is such that

A -2 A
&A ,
a

B

commutes for all i € I, then necessarily @’ = @. This completes the verification that A has the
required universal property. That the canonical isomorphism lim A; — A is defined as described
—

follows from the proof of Theorem 1.3.2. O
Lemma 1.3.4. Let A be a category, and let (A;)ie; and (B;)ie; be direct systems in A. For

eachi € I, assume that
A L B,
is a morphism such that if i, j € [ withi < j, then

Aj —— B;

I

A; —— B;
commutes. Then there exists a unique morphism
lim A; = lim B;
such that
A — B;
l l
1i_r)n Aj — li_r)n B;

commutes for all i € I.
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Proof. Leti,j € I withi < j. Since the diagrams

A,'—>Aj

l l and i\ / j

B, —— B, lim B;

commute, the diagram

Ai Aj

N /
NS

lim B i
-
commutes. This implies that there exists a unique morphism
lim A; — lim B;
— —

such that

lim Ai

N\

B;

N

lim Bl'

commutes for all i € I, proving the desired assertion.

O

Let the notation be as in Lemma 1.3.4. Assume further that A is Set, A6, Ring, or Mlod (R)
where R is a commutative ring, and that lim A; and lim B; are constructed as in the proof of

Theorem 1.3.2. It is then straightforward to verify that the morphism

lim A; — lim B,

from Lemma 1.3.4 sends [a] to [ fi(a)] if i € I is such that a € A;.



Chapter 2

Presheaves

2.1 The definition

Let X be a topological space. To X we associate a category Open(X) as follows. The objects
in Open(X) are the open sets in X. If U and V are open sets in X, then we define

] iftvVegu,
{the inclusion map} if V c U.

Mor(V,U) = {
Let C be a category. A presheaf on X with values in C is contravariant functor
F : Open(X) — C.

Concretely, a presheaf F on X provides the following:

(a) for each open subset U in X, an object F (U) of C;
(b) for open subsets U and V of X such that V C U, a morphism

FWU) — F(V)

such that if U = V, then this morphism is the identity, and if W is another open subset of X
with W c V c U, then

F(U) F W)

~N 7

F(V)

commutes.

If # is a presheaf on X, and U and V are open subsets of X with V c U, then F(U) — F(V) is
referred to as a restriction morphism.

15
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2.2 Examples of presheaves

Presheaves of continuous functions. Let X be a topological space, and let Y also be a topological
space. We define a presheaf CY on X with values in Set by setting C¥ (U) to be the set of all
continuous functions U — Y for all open subsets U of X, and letting C¥ (U) — CY (V') be restriction
of functions for all open subsets U and V of X withV c U.

Presheaves of differentiable functions. Assume that X is an open subset of R" for some positive
integer n. Let r € {0,1,2,3,...,00}. We define a presheaf C” on X with values in A6 by
setting C” (U) to be the set of all r-times continuous differentiable functions U — R for all open
subsets U of X, and letting C" (U) — C” (V) be restriction of functions for all open subsets U and V
of X withV c U.

Presheaves of analytic functions. Assume that X is an open subset of C" for some positive
integer n. We define a presheaf C* on X with values in Ring by setting C*(U) to be the set of all
analytic functions U — C for all open subsets U of X, and letting C“(U) — C“(V) be restriction
of functions for all open subsets U and V of X withV C U.

Constant presheaves. Let X be a topological space, and let C be a category. Let A be an object
in C. We define a presheaf Ax on X with values in C by setting Ax(U) = A for all open subsets U
of X, and letting Ax(U) — Ax(V) be the identity element of Mor(A, A) for all open subsets U
and V of X with V. c U. We refer to Ax as a constant presheaf.

Skyscraper presheaves. Let X be a non-empty topological space. Let A € Ob(A6). Fix an
element xo € X. We define a presheaf & = &4 on X with values in A6 by setting

A ifxgeU,

SWU) =
) {0 ifxg g U

for open subsets U of X, and letting

idg ifxoeV cU,

SU) — S(V) be )
0 ifxogVcU

for all open subsets U and V of X with V c U. We refer to & as a skyscraper presheaf.

A pathological example. Let X be a 7T} topological space with at least two points. (recall that T;

means that for any two elements a, b € X with a # b there exists open subsets U and V of X such

thata e Uand b ¢ U and a ¢ V and b € V). We define a presheaf % on X with values in A6 by
setting

@@0=$;#U_K

0 fUSCX

for open subsets U of X, and letting

x>0 ifVgX,

PU) — P(V) be defined by .
x—x ifU=V=X

for all open subsets U and V of X with V C U.



2.3. STALKS OF PRESHEAVES 17
2.3 Stalks of presheaves

Let X be a topological space, and let C be a category. Let F be a presheaf on X with values in C.
Assume that every direct system in C has a direct limit. In this situation, the presheaf F defines a
function from X to Ob(C).

To explain this, let x € X. Consider set I = I, of all open subsets U of X that contain x. We
define arelation < on / by letting U < Vifandonly if V ¢ U for U,V € I. Evidently, < is a partial
order on [ (i.e., < is reflexive, antisymmetric, and transitive). The set is also directed: if U,V € I,
thenUNV elandU <UNVandV < UnNYV. The presheaf F associates a direct system to /.
LetU,V e I withU < V,i.e.,V c U. The presheaf F provides a morphism

FU) — F(V).
With these maps, we obtain a direct system (F (U))ye;. We define

Fe =lim F(U).
xeU
By our assumption on C, this direct limit exists. We refer to 7, as the stalk of & atx. Assume further
that C is a subcategory of Set. Let U be an open subset of X and let x € U. Evidently, ¥ (U) —
is a function between sets. We will sometimes refer to the elements of 7, as germs. If s € 7 (U),

then we will denote the image of s under the function #(U) — 5, by s,. For us, C will usually
be Set, A6, Ring, or 1NMlod (R). We have the following lemma.

Lemma 2.3.1. Let X be a topological space, and let C be Set, A6, Ring, or 1Mod(R). Let F be
a presheaf on X with values in C. Let x € X.

(a) Let U be an open subset of X such that x € U, and let e € F,. There exists an open subset W
of X and s € F (W) such that x € W c U and sy = e.

(b) Let U andV be open subsets of X suchthatx € U andx € V, andlets € F(U) andt € F(V).
If s = ty, then there exists an open subset W of X such thatx e W c U NV and

Sy =1y 2.1)
fory e W.

Proof. (a) By the construction of F, from the proof of Theorem 1.3.2, there exists an open subset V
of X such that x € V and r € F (V) such that r, = e. Since the diagram

PV, UNV

F(V) FWAV)
N7
F,

commutes, we have py yny(r), = e. Thus, (a) holds with W = U NV and s = py ynv (7).

(b) Assume that s, = 7,.. By the construction of #, from the proof of Theorem 1.3.2, since s, = t,,
there exists an open subset W of X such thatx e W c U NV and pyw(t) = pyw(s) € F(W).
Let y € W c UnV. Then t and pyw(t) define the same germ in 7, i.e., t, = pyw(t)y;
similarly, s, = py w(s),. Since pyw(t) = py,w(s), we obtain s, = 1,. O
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We consider some examples.

The stalks of the presheaf of analytic functions. Let X be an open subset of C, and, as above,
let C® be the presheaf of analytic functions on X. Let x € X. How can we think of the elements
of CY? Let G € C. By the definition of Cy’, the germ G 1is an equivalence class: let U be an
open subset of X such that x € U and let f € C“(U) be such that G = [ f]. The function f is only
one representative for G. Assume that / is another representative for G. Then, from the involved
definitions, & € C“(V) where V is another open subset of X such that x € V, and there exists an
open subset W of X suchthatx e W c U NV and

hlw = flw.

Evidently, the germ G encodes the local behavior of f (or any other representative for G) at x. We
can make C¢ even more concrete. Since f is analytic at x, the function f admits a power series
expansion

o0

F@ =) an(z=x)"

n=0
that converges to f(x) in an open disk contained in U and centered at x. We define

CY — C{z-x}
by
fro ) an(z=x)"
n=0

Here, C{z—a} is the ring of complex power series in z — x that converge in some open disk centered
at x. This map is an isomorphism of rings.

The stalks of a constant presheaf. Let X be a non-empty topological space, let C be a category
for which every direct system has a direct limit, let A be an object of C, and let Ax be the previously
defined constant presheaf. Let x € X. We claim that the stalk of Ay at x is

Ax.c = lim Ax(U) = A.
xeU

More precisely, for each open subset U of X with x € U, define

to be the identity. Clearly, if U and V are open subsets of X with x € V c U, then

Ax(U) Ax (V)
N S

commutes as all of these morphisms are the identity. Next, suppose that B € Ob(C), and there
exist morphisms
AX(U) = A e B

such that if U and V are open subsets of X withx € V C U, then
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Ax(U) Ax(V)
N

commutes. Since Ax(U) = A = Ax(V) and Ax(U) — Ax(V) is the identity morphism for all
open subsets U and V of X with x € V C U, we see that the maps Ax(U) — B, for U an open
subset of X such that x € U, are all the same morphism @ : A — B. Evidently, if U is an open
subset of X such that x € U, then

Ax(U) — A

N

B

commutes. Moreover, it is clear that « is the unique such morphism.

The stalks of a skyscraper presheaf. Let X be a topological space, let A € Ob(_A46), and fix an
element xg € X. Let & = &4 be the associated skyscraper presheaf defined above. Let C be the
closure of the set {xp} in X. Let x € X. We claim that the stalk &, is given by

A ifx eC,
Sy = .
0 ifxéecC.

Let x € C. Let U be an open subset of X such that x € U. Then xg € U (otherwise, X — U is a
closed set containing xg, so that x € C ¢ X — U because C is the closure of {xp}, a contradiction).
Hence, $(U) = A. From this, we see that if U and V are open subsets of X such thatx € V c U,
then the restriction homomorphism & (U) — &(V) is id4. Arguing as in the case of the constant
presheaf, we obtain
Sy = li_r)ncS’(U) =A.
xeU

Now assume that x ¢ C. We need to prove that &y = 0. For this, it will suffice to prove that
if B € Ob(A6), and for each open subset U of X such that x € U,

S(U) — B

is a homomorphism such that

S(U) S(V)
NS
B

commutes for all open subsets U and V of X such that x € V C U, then §(U) — B is the zero
homomorphism for all open subsets U of X such that x € U. Let U be an open subset of X such
that x € U. Since x ¢ C, there exists a closed subset D of X such that xo € D and x ¢ D.
Let W=X—-D. Thenx € Wandxg ¢ W. DefineV=WnNU. Thenx e VCU. Asxyg ¢V, we
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have &(V) = 0; hence, the homomorphism & (U) — §(V) is the zero homomorphism. It follows
that §(U) — B is also the zero homomorphism, as desired.

The stalks of the pathological example. Let X be a 77 topological space with at least two points,
and let & be the pathological presheaf from above. Let x € X. We claim that #, =0, i.e.,

lim P(U) = 0.
xeU

To prove this, it will suffice to prove that if B € Ob(46), and for each open subset U of X such
thatx € U,
»U) — B

is a homomorphism such that

P(U) PV)
NS
B

commutes for all open subsets U and V of X such that x € V C U, then #(U) — B is the zero
homomorphism for all open subsets U of X such that x € U. Let U be an open subset of X such
thatx € U. If U # X, then P (U) = 0 by definition, so that #(U) — B is the zero homomorphism.
Assume that U = X. By our assumption, there exists y € X with x # y. Also, since X is T, there
exists an open subset V of X such thatx € V but y ¢ V. The homomorphism

PU)=Z — P(V) =0

is necessarily the zero homomorphism. This implies that #(U) — B is also the zero homomor-
phism.

2.4 Morphisms of presheaves

Let X be a topological space, let C be a category, and let F and § be presheaves on X with values
in C. A morphism of presheaves

s Lg
is a collection of morphisms

f()
{9 (U) — Q(U)}
U c X open
such that for all open subsets U and V of X with V C U the diagram

7)™ ¢wv)

l l (2.2)

Fv)y ™ ¢w)
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commutes. Evidently, the collection

ides id
F g {9"(U) 79 g )

}U C X open

is a morphism of presheaves. The composition of morphisms of presheaves is defined in the obvious
way. We say that f: 5 — @ is an isomorphism if there exists a morphism g : ¢ — F such
that g o f =idy and f o g =idg. We note that the morphism f: F — @ also induces morphisms
of stalks. Letx € X. If U and V are open subsets of X such thatx € V C U, then the diagram (2.2)
commutes. By Lemma 1.3.4, this implies that there exists a unique morphism

% = lim ¥ (U) — G, = lim G (U)
xeU xeU

such that

7w) L ¢w)

l |

Fx G

commutes for all open subsets U of X such that x € U.

Lemma 2.4.1. Let X be a topological space, let C be a category, and let & and G be presheaves
on X with values in C. Let f : & — G be a morphism of presheaves. Then f is an isomorphism if
and only if f(U) is an isomorphism for every open subset U of X.

Proof. Assume that f is anisomorphism, withinverse g : ¢ — 5. Thengo f = idy and fog = idg.
This means that for all open subsets U of X we have g(U)o f(U) = idg ) and f(U)og(U) = idg ).
It follows that f(U) is an isomorphism for all open subsets U of X.

Conversely, assume that f(U) is an isomorphism for all open subsets U of X. For each open
subset U of X, let g(U) : G(U) — F(U) be the inverse of f(U) : F(U) — G(U). We claim that

{gw) « &*(U)}
U c X open

is amorphism of presheaves. Let U and V be open subsets of X with V € U. Since f is a morphism
of presheaves

Fw) W gw)

= e
Fv) X ¢w)

commutes; here, we have given names to the restriction morphisms. We have:

Bof(U)=f(V)oa
Bo f(U)og(U)=f(V)oaog()
Boidgw) = f(V)oaog(U)



22 CHAPTER 2. PRESHEAVES

B=f(V)oaog(U)
g(V)opB=g(V)o f(V)oaog(l)
g(V)oB=idgy)oaog(l)
g(V)opB=aog).

Thus,

cw) Y F )

= ]s
cv) 9 F(v)
commutes. It follows that

gL?%Wﬁﬂmﬂ

U c X open

is a morphism of presheaves. Since g o f = idy and f o g = idg, the morphism f is an
isomorphism. a



Chapter 3

Sheaves

3.1 The definition

Let X be a topological space. Let U be an open subset of X. An open cover of U consists of a
set 1, and for each i € I, an open subset U; of U, such that U = U;¢;U;. Next, let C be a subcategory
of Set, and let F be a presheaf on X with values in C. If U and V are open subsets of X such
that V c U, then we will denote the restriction morphism 5 (U) — F (V) by py v; note that since C
is a subcategory of &ef, the morphism py v is actually a function between sets.

Given these circumstances, we consider two conditions. The first condition is called the gluing
condition and is stated as follows:

(G) If U is an open subset of X, {U,};c; is an open cover of U, {s;};c; is such that s; € F(U;)
fori € I, and foralli, j € I wehave py, v,nu, (i) = pu;uinu; (;), then there exists s € F (U)
such that py y,(s) = s; foralli € I.

The gluing condition asserts that if a collection of local sections agree on overlaps, then these local
sections are the restriction of a section. We also consider the following condition:

(L) If U is an open subset of X, {U;};c; is an open cover of U, and s, s’ € F(U) are such that
puu,(s) = pyy,(s’) foralli € I, then s = 5.

We will sometimes refer to condition (L) as the locality condition. If conditions (G) and (L) both
hold, and if a collection of local sections agree on overlaps, then by (G) these local sections are the
restriction of a section, and by (L) this section is unique. If F satisfies both (G) and (L), then we say
that 7 is a sheaf. If F satisfies (L) (but possibly not (G)), then we say that # is a monopresheaf
or a separated presheaf.

Let X be a topological space, and let C be a subcategory of Sef. Let & and § be sheaves on X
with values in C. In this case, we define a morphism F — ( exactly as in the case of presheaves.

Proposition 3.1.1. Let X be a topological space, let C be a subcategory of Set, and let F be
a monopresheaf on X with values in C. Let U be an open subset of X, and let s,s" € F(U).
Then s = s" ifand only if s, = s forall x € U.

Proof. It is clear that if s = s/, then s, = s/, for all x € U. Assume that s, = s/, for all x € U.
Letx € U. Since s, = s, there exists an open subset V, of X such thatx € V, c U and py v, (s) =

23
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puv,(s"). The collection {V,}cy is an open cover of U. Applying the locality condition (L) to
this cover and s and s” we conclude that s = s”. m]

Corollary 3.1.2. Let X be a topological space, let C be a subcategory of Set, and let F and G
be presheaves on X with values in C. Let f, f' : & — @ be maps of presheaves. Assume further
that G is a monopresheaf. If f, = f! forall x € X, then f = f’.

Proof. Let U be an open subset of X. We need to prove that f(U), f'(U): F(U) — G(U) are the
same function. Let s € F(U); we need to prove that f(U)(s) = f'(U)(s). Let x € U. Since the
diagrams

Fw) —2 . ¢w) Fw) —2 s ¢w)
| I L
F = lmF(V) L G =1limG(V) F=lmF(V) 5 ¢ =limG(V)
x:V x:V x:V x?V

commute, we have:

FO)(8)x = fr(sx)
= fi(sy) (because f; = f7)
= f(U)(5)x.

Since f(U)(s)x = f'(U)(s), for all x € U, Proposition 3.1.1 implies that f(U)(s) = f(U)(s). O

Lemma 3.1.3. Let X be a topological space, let C be a subcategory of Set, let F and G be
presheaves on X with values in C, and let f: F — @ be a morphism. If F is a monopresheaf,
and f, is a monomorphism for all x € X, then f is a monomorphism.

Proof. Assume that F is a monopresheaf and f, is a monomorphism for all x € X. Let # be
a presheaf on X with values in C and let hy, hy € Mor(#,F) be such that f o hy = f o hy; we
need to prove that 7y = hy. If x € X, then f; o h1, = fy o ha, and so hj, = hy, since f; is a
monomorphism. By Corollary 3.1.2, since F is a monopresheaf, we conclude that i; = h,. O

Lemma 3.1.4. Let X be a topological space, let C be a subcategory of Set, and let F and § be
presheaves on X with values in C. Let f: F — @ be an isomorphism of presheaves. If F is a
sheaf, then so is G.

Proof. We first verify the gluing condition (G). Let U be an open subset of X, let {U;};c; be an
open cover of U, let {s;};c; be such that s; € G(U;) fori € I, and assume that for all i, j € I we
have pgi’Ume(si) = pg,,u,»muj(sf)' Fori € I, define r; = f(U)™'(s;) € F(U;). Thenforalli, j € I
we have p*Zi_ ’UmUj(r,-) = pgj_’UmUj(rj). Since F is a sheaf, F satisfies the gluing condition (G).
Hence, there exists r € F(U) such that p‘g’Ui(r) =rifori e I. Sets = f(U)(r) € GU).

Then pg y.(8) = s; fori € I. This verifies the gluing condition for ¢. The locality condition (L)
for @ is similarly verified. O
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3.2 Which presheaf examples are sheaves?

We consider which of the examples of presheaves from Section 2.2 are sheaves.

Presheaves of continuous, differentiable, and analytic functions. The presheaves CY,Cr,and C¥
are all sheaves. For example, suppose X and Y are topological spaces, and consider the presheaf CY.
To verity the gluing condition (G), let U be an open subset of X, let {U; };c; be an open cover of U,
and let { f;};e; be such that f; € CY(U;) fori € I and for all i, j € I, we have filvinw; = filview;-
Define f: U — Y by f(x) = fi(x) forx € U and i € I such that x € U;. Then f is well-defined and
continuous, and f|y, = f; fori € I. This verifies the gluing condition (G). The locality condition (L)
is similarly verified.

Constant presheaves. Let X be a topological space, and assume that C is a subcategory of Set.
Let A be an object of C. In Section 2.2 we defined the constant sheaf Ax on X with values in C.
The presheaf Ay is not always a sheaf. For example, assume that A contains at least two elements s
and s’. Then Ay does not satisfy the locality condition (L). To see this, let U = (). For an open
cover of U we let I = (). We have Ax(U) = Ax(0) = A so that 5, s € Ax(U). Then the condition
in the locality condition (L) is trivially satisfied; however, s # s’.

Skyscraper presheaves. Let X be a non-empty topological space, let A € Ob(_A6), and let xg € X.
In Section 2.2 we defined the associated skyscraper presheaf 4 on X with values in A 6. We claim
that & is a sheaf.

To verify the gluing condition (G), let U be an open subset of X, let {U,};c; be an open cover
of U, and let {s;};c; be such that s; € &(U;) and pU,-,UiﬂUj(Si) = pUj,UiﬂUj(Sj) fori,j € I.
Assume that xo ¢ U. Then S(U;) = 0 for all i € I so that s; = O for all i € I; hence,
setting s = 0, we have pyy,(s) = s; for all i € I. Assume that xo € U. Let k € [ be
such that xg € Uy. Then S(Uy) = A = S(U). Define define s = si; note that s € S(U).
Leti € I. If xo ¢ Uj, then $(U;) = 0 so that s; = 0, and we have py y,(s) = s;. Assume
thatxo € U;. By assumption, we have py, v,nv, (5i) = puvinu, (Sk); since S (Uy) = S(U;NU;) = A
and py, .v.nU, = PUUinU, = 1da, this implies that s; = s; = s. Similarly, py y,(s) = ida(s) = s. It
follows that py y, (s) = s;. This verifies the gluing condition (G).

To verify the locality condition (L), let U be an open subset of X, let {U;}c; be an open cover
of U, and let 5, s" € §(U) be such that py y,(s) = py.y,(s’) forall i € I. Assume first that xo ¢ U.
Then S(U) = 0, and s = s = 0. Assume that xo € U. Then xo € Uy for some k € I. We
have §(U) = §(Ux) = A and py,y, = ida. Since py y, (s) = py.y,(s’), we obtain s = s’. This
verifies the locality condition (L).

The pathological example. Let X be a 7 topological space with at least two points, and let & be
the presheaf on X with values in A 6 defined in Section 2.2. We claim that  is not a sheaf. By our
assumptions on X, there exists an open cover {U;};c; of X such that U; for i € I is a proper subset
of X. Consider the elements 0,1 € #P(X) = Z. We have px y,(0) =0 = pxy,(1) foralli € I;
however, 0 # 1. Thus, & does not satisfy the locality condition (L).

3.3 Etalé spaces

Let X be a topological space. An Etalé space over X is a pair (E, p) where E is a topological
space and p: E — X is a function that is a local homeomorphism (i.e., for every a € E there



26 CHAPTER 3. SHEAVES

exists an open subset C of E and an open subset V of X such that a € C, p(C) = V, and the
function p|c: C — V is a homeomorphism). Let (E, p) and (E’, p’) be étalé spaces over X. A
morphism f: (E, p) — (E’, p’) is a continuous function f: E — E’ such that

A /p (3.1

commutes.

Some topology

Lemma 3.3.1. Let Y| and Y, be topological spaces and let f: Y| — Y, be a local homeomorphism.
Then f is continuous and open.

Proof. To prove that f is continuous, let U be an open subset of Y»; we need to prove that £~ (U)
is open. Let y € f~1(U). Since f is a local homeomorphism, there exists an open subset vy
of Yy such that y € Vy, f(Vy) is open, and fly,: Vy — f(Vy) is a homeomorphism. Evidently, we
have f(y) € f(Vy) NU. Define U, = (f|Vy)‘1(f(Vy) NU). The set Uy is an open subset of Y1, U,
is contained in f~1(U), and y € Uy. Since £~ (U) is the union of the open sets Uy fory € f~1(U),
the set f~!1(U) is open.

To see that f is open, let C be an open subset of Y;. Since f is a local homeomorphism, the
open set C admits an open cover {C;};c; of open subsets of Y| such that f(C;) is open fori € I. It
follows that the set f(C) = U;c;p(C;) is open. O

Lemma 3.3.2. Let X be a topological space, and let (E, p) and (E’, p’) be étalé spaces over X.
Let f: E — E’ be a function such that the diagram (3.1) commutes. The following are equivalent:

(a) f is continuous.
(b) f is open.

(c) fis alocal homeomorphism.

Proof. (c) = (a) and (b). This follows from Lemma 3.3.1.

(a) = (c). Assume that f is continuous. Let @ € E. Since p’ is a local homeomorphism,
there exists an open subset C” of E’ such that f(a) € C’, p’(C’) is an open subset of X, and the
function p’|¢c: C" — p(C’) is alocal homeomorphism. Since f is continuous, there exists an open
subset D of E such that a € D and f(D) c C’. Also, since p is a local homeomorphism, there
exists an open subset C of E suchthata € C c D, p(C) is an open subsetof X, and p|c: C — p(C)
is a homeomorphism. Since p = p’ o f and f(C) c C’, we have p(C) = p’(f(C)) c p’(C’).
Since p(C) c p’(C’), p(C) is open in X, and p’|c-: C' — p(C’) is a homeomorphism, the
set (p’lc)~'(p(C)) is an open subset of C’. Using p = p’ o f it is straightforward to verify
that £(C) = (p’|c/)""(p(C)). Tt follows that f(C) is an open subset of C’. We now have a
commutative diagram

fle £(C)

rlc P'lrc)

p(C) = p'(f(C))

C
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where every set is open. Since plc = (p’|(c)) © flc and p|c and p’|¢(c) are homeomorphisms,
the function f|c: C — f(C) is also a homeomorphism.

(b) = (c). Assume that f is open. Let a € E. Since p is a local homeomorphism, there
exists an open set C such that a € C, p(C) is open, and p|c: C — p(C) is a homeomorphism.
Since f is open, the subset f(C) of E is open. Also, since f(a) is contained in the open set f(C)
and p’ is a local homeomorphism, there exists an open subset C’ of E’ such that f(a) € C’ c f(C)
and p’|c: C" — p(C’) is a local homeomorphism. Define V = p(C) N p(C’), D = (plc) "1 (V),
and D’ = (p|c)"" (V). Then p|p: D — V and p’|p;: D’ — V are homeomorphisms. We
claim that f(D) c D’. Letd € D. Then p(d) € p(D) =V = p’(D’). Letd € D’ be
such that p’(d’) = p(d). Since D’ c C’ c f(C), there exists ¢ € C such that f(c) = d'.
Now p’(d’) = p’(f(c)) = p(c). It follows that p(d) = p(c). Since p|c is injective, we
obtain ¢ = d. Since f(c) = d’, this yields that f(d) = d’. It follows that f(D) c D’. We
now have a commutative diagram

D flp D’

rlp A’

p(D) = p'(D’)

where every set is open. Since p|p = (p’|p’) o f|lp and p|p and p’|p- are homeomorphisms, the
function f|p: D — D’ is also a homeomorphism. O

Lemma 3.3.3. Let X be a topological space, and let (E, p) be an étale space over X.

(a) Let U be an open subset of X, and let s: U — E be a continuous function such that

y‘ l” (3.2)

U— X

commutes. Then s is injective and is a local homeomorphism.

(b) Let x € X and assume that a € p~'({x}). There exists an open subset V of X and a
continuous function t: V — E such that x € V, the diagram

/ l” (3.3)

Ve X

commutes, and t(x) = a. The set p~' ({x}) is a discrete subset of E.

(c) Let x € X, and Let Uy and U, be open subsets of X such that x € Uy and x € U,.
Let s1: Uy — E and sy: Uy — E be continuous functions such that

E E

S'/’ lp and 7’ lp (3.4)

U — X Uy — X
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commute. If s1(x) = s2(x), then there exists an open subset W of X suchthatx € W c U1NU,
and s1(y) = s2(y) fory e W.

Proof. (a) Since p(s(x)) = x for x € U, the function s is injective. Let x € U, and define a = s(x).
Since p is a local homeomorphism, there exists an open subset C of E and an open subset V of X
suchthata € C, p(C) =V, andi = p|¢c: C — V is a homeomorphism. Also, since s is continuous
at x, there exists an open subset W of U such that x € W and s(W) c C. Since s(W) C C, we see
that W = i(s(W)) c i(C) = V; since i! is a homeomorphism, the set s(W) = i~! (W) is open. We
have the commutative diagram

s(W) — C

st ilz
W1V

We now see that s: W — s(W) is (ilw)~': W — s(W) and is thus a homeomorphism.

a=s(x)

o

(b) We have p(a) = x. Since p is a local homeomorphism, there exists an open subset C of E
and an open subset V of X such that a € C, p(C) =V, and p|c: C — V is a homeomorphism.
Define t: V — E by t(y) = (p|lc)~(y) for y € V. Then (3.3) commutes, and #(x) = a. To prove
that p~!({x}) is a discrete subset of E, since a is an arbitrary element of p~!({x}), it will suffice
to prove that the intersection of p~!({x}) with the open set C is {a}. Let b € C n p~'({x}).
Then p(b) = x = p(a). Since p|c: C — V is a bijection, we have a = b.

(c) Let a = s1(x) = sp(x); then a € E and p(a) = x. Since p is a local homeomorphism,
there exists an open subset C of E and an open subset V of X such thata € C, p(C) =V, x €V,
and p|c: C — V is a homeomorphism. Since s; and s, are continuous at x, there exists an open
subset W of X suchthatx e W, W c UinU,NC, s;(W) C C, and so(W) c C. Diagrammatically,

fori =1andi =2, we have
si
/le

W—V
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Now let y € W. Then p(s1(y)) =y = p(s2(y)); since s1(y), s2(y) € C, and since p|c: C — Vis
a homeomorphism, we must have s1(y) = s2(y). O

From étalé spaces to sheaves

A sheaf is associated to every étalé space as follows. Let X be a topological space, and Letp: E —
X be a étalé space over X. For each open subset U of X, we let I'(U, E) be the set of all continuous

maps s: U — E such that
/L

U— X
commutes. If U and V are open subsets of X such that V c U, then we define

pPU.V

I'U,E)“Z T(V,E)

by puyv(s) =s|y fors e I'(U, E).

Lemma 3.34. Let X be a topological space, and Let p: E — X be a étalé space over X.
Then T'(-, E) is a sheaf on X with values in Set.

Proof. It is easy to see that I'(-, E) is a presheaf. To verify the gluing condition (G), let U be an
open subset of X, let {U;};c; be an open cover of U, and let {s;};c; be such that s; € I'(U;, E)
for i € I and py, v,nv; (si) = pu;uinu,(sj) for all i, j € I. Define s : U — E by s(x) = 5;(x)
if i € I is such that x € U;; since {s;};¢s is a cover of U there is at least one such i. We claim that s
is well-defined. Assume that i, j € I are such that s € U; and s € U;. As a consequence of our
assumption, s;|u;nu; = Sjlu;nu;- Hence, s;(x) = 5;(x), and s is well-defined. If i € / and x € U;,
then (p o s)(x) = p(si(x)) = x; also, we see that if i € I, then py y,(s) = s|y, = s; which proves
that s is continuous. We conclude that s € I'(U, E) and the gluing condition (G) holds. To verify
the locality condition (L), let U be an open subset of X, let {U;};c; be an open cover of U, and
let s,s” € I'(U, E) be such that py y,(s) = py,u,(s’) foralli € I. Then s|y, = §’|y, for alli € 1.
Since {U; }i¢s is a cover of U, we obtain s = s’. O

Lemma 3.3.5. Let X be a topological space, and let (E, p) be an étalé space over X. Let x € X.
If U is an open subset of X such that x € X, then define T(U,E) — p~'({x}) by s — s(x)
for s € T'(U, E). Then, with these morphisms, p~'({x}) is a direct limit of {T' (U, E)}xevcx. The
canonical isomorphism

[(,E), = im[(U, E) = p~l({x}) (3.5)

xeU

sends sy = [s] to s(x) for s € T'(U,E) where U is an open subset of X such that x € U
(here imI'(U, E) is constructed as in the proof of Theorem 1.3.2).

Proof. Assume first that p~'({x}) is empty. In this case, it is easy to see that I'(U, E) = 0 for
all open subsets U of X such that x € U. It follows that T'(-, E), = 0 = p~!({x}). Now assume
that p~!({x}) is non-empty. For U an open subset of X such that x € U, define

LU, E) — p~'({x})
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by sending s € I'(U, E) to s(x). Itis clear thatif U and V are open subsets of X suchthatx € V c U,
then diagram

I'(U,E) I'(V,E)
P~ ({x})
commutes. We see that the conditions (a) and (b) from Lemma 1.3.3 follow from (b) and (c) of
Lemma 3.3.3, respectively; Lemma 1.3.3 now implies the desired result. O

Lemma 3.3.6. Let X be a topological space, and let f: (E,p) — (E’, p’) be a morphism of étalé
spaces over X. Define
r
(. E) -5 T(,E)
by letting
rf)u
I'f= {F(U, E) L (v, E’)}
U C X open

where (I'f)(U)(s) = f(U)os forU anopen subset of X and s € I'(U, E). ThenT f is a well-defined
morphism of sheaves.

Proof. The proof of this lemma is straightforward and is left to the reader. O

From presheaves to étalé spaces

Let X be a topological space, and let F be a presheaf on X with values in Sef. We will attach an
étalé space to F. Define
LF =| | %

xeX

be the disjoint union of all the stalks of F. Define

Ly 77 L x

by setting p(y) = x for x € X and y € F, so that p is the natural projection. We will define a
topology on LF as follows. Let U be an open subset of X, and let s € F(U). We define a function

UL Ly

by setting §(x) = s, € F, for x € U. Evidently, §(U) is a subset of L7, and the following diagram

commutes
i

U— X

The following shows that the subsets §(U) of X define a topology with respect to which (LF, p) is
an étalé space.
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Theorem 3.3.7. Let X be a topological space, and let F be a presheaf on X with values in Set.
Let B be the collection of sets $(U) as U ranges over the open subsets of X and s ranges over the
elements of F (U). Then B is the basis for a topology on LF and:

(a) If U is an open subset of X and s € F(U), then the function §: U — §(U) is a homeomor-
phism.

(b) The pair (LF, p) is an étalé space.

Proof. To prove that B is the basis for a topology we have to prove two statements: (1) B covers
X; (2) if §(U),7(V) are in B, where U and V are open subsets of X, s € F(U), and t € F(V),
and e € §(U) N 7(V), then there exists an open subset W of X and r € F (W) such that

e € F(W) C $(U) nE(V).

The statement (1) follows immediately from (a) of Lemma 2.3.1. To prove (2), let U and V be
open subsets of X, let s € F(U) and t € F(V), and assume that e is in §(U) N 7(V). Taking
into account the involved definitions, it follows that there exists x € U NV such that ¢ = s, = 4.
Since s, = ty, there exists an open subset W of X such thatx e W c UNV and py w(s) = py.w(?).
We define r = py.w(s) = py.w(t). We now claim that e € 7(W) and

F(W) c 8(U)NiV). (3.6)

Since r = py w(s), the elements r and s define the same germ in F,, i.e., ry = s,. Since s, = e,
we have r, = e; this implies that e € #(W). Next, let a € #(W). Let y € W be such that ry, = a.
Sincey e W cUnVandr = pyw(s) = pvw(t), the elements r, s, and ¢ all define the same germ
in %, i.e., ry = s, =ty. Thus, a = s, = t, € §(U) N#(V). This proves (3.6).

(a) Let U be an open subset of X, and let s € F(U). To prove that §: U — §(U) is a
homeomorphism it will suffice to prove that this function is a continuous and open bijection. It is
easy to see that our function is a bijection. To see it is continuous, let V be an open subset of X,
and let t € F(V); to prove that § is continuous it will suffice to prove that §~ (7(V')) is open. Now

§TVE(WV)) = {x e U: §(x) € {(V)}
={xeU:s, €i(V)}
={xeU:xeVands, =1t}
={xeUNV:s, =1t}

Letx € s 1(f(V)) = {x e UNV: s =t.}. By (b) of Lemma 2.3.1 there exists an open subset W
of X suchthatx e W cUnNVands, =t,fory €e W. It follows x € W C §~1(#(V)), proving
that §~'(7(V)) is open. Next, let V be an open subset of U; we need to prove that §(V) is open.
Define r = pyy(s) € F(V). Letx € V. Then#(x) = t, = s, = §(x). This implies that §(V) = #(V).
Since 7(V) is in B, the set §(V) = 7(V) is open.

(b) To prove that p is a local homeomorphism, lete € LF. Then e € F, for some x € X. By (a)
of Lemma 2.3.1, there exists an open subset W of X and s € (W) such that x € W and s, = e.
There is a commutative diagram

§(W)

§
/ ll’k(W)

w -9 w
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Since §: W — §(W) is a homeomorphism by (a) and id: W — W is a homeomorphism, so
is plsowy: (W) — W. O

Lemma 3.3.8. Let X be a topological space. Let F and G be presheaves on X with values in Set.
Let f: F — G be a morphism of presheaves. Define

(LF . ps) 5 (LG. pe)

by letting Lf be the function f, on each stalk F, for x € X (see Section 2.4). Then Lf is a
well-defined morphism of étalé spaces.

Proof. We need to prove that L f is continuous. By Lemma 3.3.2 it suffices to prove that Lf is
open. Let U be an open subset of X, and let s € F(U); to prove that L f is open, it will suffice to
prove that (L f)(§(U)) is open. Now

(LAGW)) = {fe(se): x € U}
Let x € U. We have the following commutative diagram:

7w) L ¢w)

L

F, fx G

Therefore, f;(sx) = (f(U)(s)),. It follows that

(LA)BW)) = {fe(s0): x € Uy = F(U)(5)(V).

Hence, by the definition of the topology on L, the set (Lf)(§(U)) is open. O

From étalé spaces to sheaves to étalé spaces

Theorem 3.3.9. Let X be a topological space, and let (E, p) be an étalé space over X. Let F =
I'(-, E). Recall from Lemma 3.3.5 that, for each x € X, there exists a canonical bijection

G =T(E) =limT'(U,E) — p~'({x})

xeU

that sends an equivalence class s, = [s] to s(x) for s € I'(U, E), where U is an open subset of X
such that x € U. The induced bijection

fiLTE =LY = |_|9*; L E= |_|p—1({x})

xeX xeX

is an isomorphism between the étalé spaces (LTE, py) = (LS, py) and (E, p) over X.
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Proof. It is clear that the diagram
Ly —L - E

N

p

X

commutes. Since f is a bijection, by Lemma 3.3.1, to prove that f is an isomorphism of étalé
spaces, it will suffice to prove that f is a local homeomorphism; for this, by Lemma 3.3.2, it will
suffice to verify that f is open. Let U be an open subset of X, and let s € ['(U, E) = F(U); by the

definition of the topology on L, to prove that f is open, it is sufficient to check that f(§(U)) is
open. Now

FGW)) = f({sx: x € U})
={s(x): x e U}
=s(U).

This is an open set by Lemma 3.3.3 and Lemma 3.3.1. O

From presheaves to étalé spaces to sheaves

Lemma 3.3.10. Let X be a topological space, and let F be a presheaf on X with values in Set.
For each open subset U of X, define

Fw) "2Y (rLF) W)

by nz(U)(s) = § for s € F(U). Then the collection of functions
{ff(U) "7 (FLS")(U)}
U c X open

defines a morphism of presheaves
F 5 TLT.

Proof. We first note that the maps ny(U) for U an open subset of X are well-defined: in The-
orem 3.3.7 we proved that if s € F(U), then §: U — L5 is a homeomorphism and is thus
continuous. Next, let U and V be open subsets of X with V c U. To see that

FWU) — ('LF)(U)

l l 67

FV) — (CLF)(V)

commutes, let s € F(U) and x € V. Then image of s under the composition

FU) — (I'LF)(U) — (I'LF)(V)
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is the function V. — L7 that sends x to s, € LF. The image of s under the composition
FU) — F(V) — (LF)(V)
is the function that sends x to (py ys), € LF. Since the diagram
F ) FV)

NS

commutes, we have s, = (py.vs),. Hence, (3.7) commutes. O

Lemma 3.3.11. Let X be a topological space. Let & and G be presheaves on X with values in Set.
Let f: F — G be a morphism of presheaves. The diagram of morphisms of presheaves

/

¥ G
lng l( (3.8)
rry —H . rrg

commutes.

Proof. Let U be an open subset of X and let s € F(U). We need to prove that the elements

(TLA)W)) (ng(U)(s)) and ny(U) (f(U)(s))

of I'L@ are equal. Both of these elements are functions from U to LG. Letx € U. Then

((TLAW) (7 @)D ) = ((CLHW)) $)) ()

= (L o5) )

= (Lf)(8(x))
= (Lf)(sx)
= fr(sy).

And:
(ng W) (F@W)s)) | (x) = FO ()
= (FW)(),-

Since the diagram

Fw) L ¢w)

l |

fx
T G

commutes, we have f;(sx) = (f(U)(s)) . This is the desired result. o
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Lemma 3.3.12. Let X be a topological space, and let F be a presheaf on X with values in Set.
The morphism

F L TLF

is an isomorphism of presheaves if and only if F is a sheaf.

Proof. Assume that ny is an isomorphism of presheaves. By Lemma 3.3.4, 'L7 is a sheaf.
Lemma 3.1.4 now implies that F is a sheaf.

Assume that 7 is a sheaf. To show that n5 is an isomorphism it will suffice to prove that ns (U)
is an isomorphism, i.e., bijection, for every open subset U of X (see Lemma 2.4.1). Let U be an
open subset of X. We first prove that ng(U): F(U) — ('LF)(U) is injective. Let s,s” € F(U)
and assume that n5(U)(s) = nz(U)(s"). Then s, = s’ for all x € U. By Proposition 3.1.1 we
have s = 5/, and ny (U) is injective.

To prove that ny (U) is surjective, let t € (I'LF)(U). Then, by defintion, t: U — L5 is a
continuous function such that

LT
)
U— X
commutes. By Lemma 3.3.3, ¢ is an injective local homeomorphism. By Lemma 3.3.1, 7 is open.
It follows that the set #(U) is an open subset of LF. By the definition of the topology on L7, for
each x € U, there exists an open subset U, of U and s* € F(U,) such that x € Uy, t(x) € s5(Uy),

and s¥(Uy) c t(U). We consider the open cover {Uy}rey of U and the collection {s*}ycp.
Let x1, x> € U; we claim that

PU,, U U, (8) = pu,, v, nu, (572). (3.9)
To see this, let
S1=PU, Uy U (S, 82 = pug v, nuy, (87).

Letz € Uy, NU,,. Then s; and s*' define the same germ in ,, and s, and s*2 define the same germ
in #,. That is,

S,z = (s, 82,z = (s7%);.

We also have, by construction,
s¥1(Uy,), s*2(Uy,) € 1(U).

Considering the definition of L7, this implies that
s¥1(2) = 1(2) = $2(2)

so that (s*), = (s™),. By Lemma 3.1.1 we conclude that s; = s, as claimed. Since F is a sheaf,
by the gluing condition (G), there exists » € F (U) such that py y (r) = s* forallx € U. Letx € U.
Then t(x) = (s*), = ry. This implies that ny (U)(r) = ¢, proving that ny (U) is surjective. O

We can use Lemma 3.3.12 to again prove that the constant presheaf is not a sheaf if A has at
least two elements. Let X be a topological space and let A be a set. By definition, the constant
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presheaf & = Ay is such that #(U) = A for all open subsets U of X. Thus, F(0) = A. We also
have
(CLF)(0) =T(0,LF) ={0}.

We see that if A has at least two elements, then the function

F©0) = A" (rLF)(0) = {0}

cannot be a bijection.

Sheafification of presheaves

The I'L construction will allow us to canonically associate a sheaf to every presheaf. For this, we
need the following lemma.

Lemma 3.3.13. Let X be a topological space, and let F be a presheaf on X with values in Set.
If x € X, then the induced morphism

(n5)x

gx - (FLg)x
is an isomorphism.

Proof. Letx € X. The function (ny), is such that

((n7)x) (s2) = (((ng (U))(5))x = (§)x

for s € F(U) where U is an open subset of X such that x € U (see the remark after Lemma 1.3.4).
Next, we recall the function

(CLF), L5 p3l(a}) = %

from Lemma 3.3.5. This function is a bijection, and satisfies

F((3)) = (H)(x) = sx

for s € F(U), where U is an open subset of X such that x € U. Since f is a bijection, to prove the
lemma it will suffice to prove that

f © (nﬁr)x = id&’x-

Let U be an open subset of X such thatx € U. Let s € F(U). Then

(f o (nz)x) (s0) = f ((n7)x(5x))
= f(($))
=Sy
= idgfx (Sx) .

Since every element of #, has the form s, for some open subset U of X suchthatx € Uands € F(U),
we conclude that f o (nz), = idg,. O
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Theorem 3.3.14 (Sheafification). Let X be a topological space, and let F be a presheaf on X with
values in Set. Let G be a sheaf on X with values in Set. Assume that there exists a morphism

5L (3.10)
of presheaves. Then there exists a unique morphism
rL7 -5 ¢

of sheaves such that
¥ YL TLY

\ lg (3.11)

G

commutes.

Proof. By Lemma 3.3.11, we have the following commutative diagram of presheaves:

¥ Y L TLY

b

¢ ——— ILG

By Lemma 3.3.12, the morphism 7, is an isomorphism of sheaves. It follows thatif g: 'LF — @
is nél oI'Lf, then (3.11) commutes. This proves the existence of the desired g. To prove the

uniqueness of g, assume that g, g’: 'LF — (@ are two sheaf morphisms such that

F =, ILF F —1> LS

\‘ lg and \ lg,
¢ G

commute. Let x € X. Then g, o (ny), = f,. By Lemma 3.3.13, the function (ny), is an
isomorphism; hence, we have g, = f; o (ng);!. Similarly, g/ = f; o (ny); !, so that g, = g’. By
Corollary 3.1.2 we now have g = g’. i

If the notation is as in Theorem 3.3.14, then we refer to I'LF as the sheafification of . We
see that if F is a sheaf, then 'LF is isomorphic to F via the isomorphism ny: F — I'LF (see
Lemma 3.3.12).

The constant sheaf

We consider the sheafication of the constant presheaf. Let X be a topological space, and let A be a
set. The constant presheaf F = Ay is defined by & (U) = A for all open subsets U of X, and all the
restriction maps for this presheaf are the identity function id4 : A — A. We will calculate I'L5.

First of all, we have:
L7 =| |% =] |a.
xeX xeX
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In fact, we may naturally identify this with X X A:
LF = X X A.

We have
py(x,a) =x

for (x,a) € LF = X x A. The topology on L7 is defined to be the topology that has as base
the sets §(U) where U is an open subset of X and s € F(U) = A; here, §: U — L7 is defined
by §(x) = s, € F forx € U, and

S(U)={sy:xeU}=UXx{s}

because the germ s, in F, = A is s (see the discussion about the stalks of the constant presheaf
on p. 18). Let us now endow A with the discrete topology. We see then that the topology
on LF = X X A is the product topology. Next, let U be an open subset of X. We have
('LF)(U)=T(U,LY)
={s: U —> LF =X X A: siscontinuous, (py o s)(x) =x,x € U}
={s:U—->LF=XXA:s(x)=(x,r(x)),r: U— A continuous}
= {r: U — A: ris continuous}

={r: U — A: rislocally constant}.

We will refer to 'L Ax as the constant sheaf.

3.4 Abelian considerations

In this section we will show that the results of Section 3.3 still hold if we assume that the involved
presheaves, sheaves, and étalé spaces are abelian. We will not repeat the previous section; instead,
we will just provide the required additional definitions and arguments.

Abelian étalé spaces
We first develop the concept of an étalé space of abelian groups.

Proposition 3.4.1. Let X be a topological space, and let (E, p) be an étalé space over X. Assume
that for every x € X the set p~' ({x}) is an abelian group. The following are equivalent:

(a) For every open subset U of X, the set I'(U, E) is an abelian group under pointwise addition
of functions.

(b) Define
EnE ={(e,¢’) e EXE: p(e) =p(e)}.

The map
m: EnrE — E

defined by m(e,e’) = e — ¢’ for (e,e’) € EnE is continuous.
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Proof. (a) = (b). Assume that (a) holds. Let (e, ¢’) € ExE; we will prove that m is continuous
at (e, e’). Letx = p(e) = p(e’). Also, leta = e —¢’. Let C be an open subset of E such thata € C.
By (b) of Lemma 3.3.3, there exists an open subset U of X such that x € U and 5,5 € I'(U, E)
such that s(x) = e, s(x) = ¢’, s(U) and s’ (U) are openin E,and s: U — s(U) and s": U — s'(U)
are homeomorphisms. Consider the composition

U Erg S B

where (s, s”) sends y € U to (s(y), s’(y)). This composition is s — s’. By (a), s — s" is in ['(U, E),
and is hence continuous. It follows that there exists an open subset V of X such thatx € V c U and

(mo(s,s))(V)=m((s,s")(V)) cC.
Now

(5,8 )(V) ={(s(y), 5" (y)): y € V}
= (ExE) N (s(V) x 5'(V)).

Since s: U — s(U) and s": U — s’(U) are homeomorphisms, the sets s(V) and s’(V) are open
in E; hence s(V) X s’(V) is open in E X E. It follows that (s, s")(V) = (ExE) N (s(V) x s'(V)) is
openin EnE. Also, (e,e’) € (ExE) N (s(V) x s’(V)). It follows that m is continuous at (e, e’).

(b) = (a). Assume that (b) holds. Let U be an open subset of X. If U is empty, then ['(U, E)
contains exactly one element, the empty function from U to E (see p. 3), so that I'(U, E) is the
trivial group. Assume that U is non-empty. Let f, g € I'(U, E); to prove that I'(U, E) is an abelian
group under pointwise addition it will suffice to prove that f — g € I'(U, E). This amounts to
proving that f — g is continuous. Consider the function

v LY ExE

that sends x € U to (f(x), g(x)). We claim that this function is continuous. Let C and D be open
subsets of E; to prove that ( f, g) is continuous, it will suffice to prove that ( £, g) "' ((ErE)N(CxD))
is open. Now
(f,8)'((ErE) N (Cx D)) = {x € U: (f(x),8(x)) € (ExE) N (C X D)}
={xeU: (f(x),g(x)) e CxD}
={xeU: fx)eC}n{xeU: g(x) e D}
= (C)ng (D).

Since f and g are continuous, the sets f~!(C) and g~!(D) are open; hence, f~'(C) N g~ (D) is
open, proving that ( f, g) is continuous. Since ( f, g) is continuous, so is the composition

v e ™ E

This composition is f — g; hence, f — g is continuous. O

Let X be a topological space, and let (E, p) be an étalé space over X. We say that (E, p) is
an abelian étalé space or a étalé space of abelian groups if:
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(a) For every x € X, the set p~!({x}) is an abelian group.

(b) The minus map m: ExE — E from Proposition 3.4.1 is continuous.

We note that if (E, p) is an abelian étalé space over X, then the set p~!({x}) is non-empty for
every x € X (since, by definition, a group is a non-empty set). Assume that (E, p) and (E’, p’)
are abelian étalé spaces over X. A morphism (E, p) — (E’, p’) is a continuous function E — E’

such that
E E’
N
X

commutes, and, for all x € X, the induced function

P~ ({x) — p 7 ({x))

is a homomorphism of abelian groups.

From abelian étalé spaces to abelian sheaves

Let X be a topological space. By Proposition 3.4.1, if (E, p) is an abelian étalé space over X, then
for all open subsets U of X, I'(U, E) is an abelian group under pointwise addition of functions,
and I'E = I'(-, E) is a sheaf with values in A6, i.e., an abelian sheaf. If x € X, then the canonical
bijection

T, E)x — p~'({x})

from Lemma 3.3.5 is an isomorphism of abelian groups. Let f: (E, p) — (E’, p’) be a morphism
of abelian étalé spaces. Consider (E, p) and (E’, p’) as just étalé spaces; then f is a morphism
of étalé spaces. In Lemma 3.3.6 we noted that, as a morphism of étalé spaces, the morphism f
induces a morphism

r(- E) -5 T, )

of sheaves. It is straightforward to verify that I"f is, in fact, a morphism of abelian sheaves on X.

From abelian presheaves to abelian étalé spaces

Proposition 3.4.2. Let X be a topological space, and let F be presheaf on X with values in AG.
Then (LY, p) is an abelian étalé space.

Proof. If x € X, then p;({x}) = ,, by definition, and this is an abelian group. To complete
the proof we need to verify that the minus map m: LFnLF — LT is continuous. Let (e, e’) €
LFnLF,andletx = py(e) = py(e’). Let C be an open subset of LF thatcontains m (e, e’) = e—e’.
We need to find an open subset D of LFxLF such that (e,e’) € D and m(D) c C. Using the
definition of the topology on L5, we may assume that C = 7#(W), where W is an open subset of X
such that x € W and r € F(W). By (a) of Lemma 2.3.1 there exists and open subset V of X suh
that x € X and there exist s, s’ € (V) such that s, = e and s, = ¢’. We may assume that V. c W.
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Now s —s" € F(V) and (s — §')y = sy — 5, = e — e’ =r,. By (b) of Lemma 2.3.1, we may assume
that (s — s”), = ry for y € V. We now claim that

m ((5(V) x §(V)) 0 (LFxLF)) € #(W).

Let (g,8") € (8(V) x§(V)) N (LFnLF). Then there exists y € V such that g,¢" € %, s, = g,
and s, = g’. We have

m(g.g)=g—-g =sy—s,=(s—5")y=ry eF(W).

Also, it is evident that (e, e’) € (§(V) x §(V)) N (LFxLF). This completes the proof that m is
continuous at (e, ¢’). O

Let X be a topological space, and let & and ¢ be presheaves on X with values in A6.
Let f: & — (@ be a morphism of presheaves. The induced morphism Lf: LF — LG of étalé
spaces is evidently a morphism of abelian étalé spaces.

From abelian étalé spaces to abelian sheaves to abelian étalé spaces

Theorem 3.3.9 holds in the abelian setting, with the same proof.

From abelian presheaves to abelian étalé spaces to abelian sheaves

Lemma 3.3.10, Lemma 3.3.11, Lemma 3.3.12 all hold in the abelian setting, with the same proofs
(it is straightforward to verify that n+ is a morphism of abelian presheaves).

Sheafication of abelian presheaves

Lemma 3.3.13 and Theorem 3.3.14 both hold in the abelian setting.






Chapter 4

Morphisms

In this chapter we will prove some essential properties about morphisms between presheaves and
sheaves. One of the results of this chapter is that the category of presheaves and the category of
sheaves are both abelian categories, and we begin by defining this concept.

4.1 Abelian categories

In this section we define the concept of an abelian category. Let A be a category. Let F,G €
Ob(A) and assume that f € Mor(F,G). Assume that for every pair of objects F,G € Ob(A)
the set Mor(F, G) is an abelian group (in particular, this implies that Mor(F, G) is non-empty).
For A to be an abelian category the category A must satisfy four axioms:

(AB1) There exists an object 0 € Ob(.A) such that Mor(F, 0) and Mor(0, F') are the trivial group
for all F € Ob(A). Also, for all objects F, F’,G,G" € Ob(A), p € Mor(F',F), f,g €
Mor(F, G), and g € Mor(G, G’), we have

(f+8)op=fop+gop, qo(f+g =qof+qog. 4.1
(AB2) (Biproducts) Let F, G € Ob(.A). There exists an object F & G € Ob(A) and morphisms
F F
\ p
FoG
/ X
G G
such that:
(a) For any H € Ob(.A) and morphisms
F
~
G

H

43
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there exists a unique morphism F @ G — H such that

commutes.
(b) For any object H € Ob(.A ) and morphisms

"7
G

there exists a unique morphism H — F & G such that

commutes.

(AB3) Let F,G € Ob(A) and f € Mor(F, G).
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4.2)

4.3)

(a) (Kernels) There exists K € Ob(_A) and a morphism i: K — F such that the compo-

sition
K—>r—1.¢

is the zero morphism in Mor(K, G), and for any H € Ob(A) and g € Mor(H, F)

such that the composition

8 i

H F G

is the zero morphism in Mor(H, G), there exists a unique morphism

H—— K

I

— s F

such that

commutes.
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(b) (Cokernels) There exists C € Ob(A) and a morphism p: G — C such that the

composition

F—Ll.c-2.c
is the zero morphism in Mor(F, C), and for any H € Ob(A) and g € Mor(G, H)
such that

F—Ll.c—2.m

is the zero morphism in Mor(F, H), there exists a unique morphism
C — H

such that
H

Pl

commutes. In (a), we say thati: K — F is akernel of f: F — G, and in (b), we say
that p: G — Cisacokernelof f: F — G.

(AB4) Let F,G € Ob(A) and f € Mor(F,G). If f is a monomorphism, then f is a kernel of
some morphism. If f is an epimorphism, then f is a cokernel of some morphism.

Let the notation be as in the definition of an abelian category. Then the statement (AB3) is
equivalent to following statement (AB3)’. This is proven in the subsequent lemma.

(AB3)’ Let F,G € Ob(A) and f € Mor(F, G).

(a) (Kernels) There exists K € Ob(.A) and a morphism i: K — F such that for all
objects X € Ob(A),

0 —— Mor(X, K) —° Mor(X, F) —* Mor(X, G) (4.4)

is an exact sequence of abelian groups.

(b) (Cokernels) There exists C € Ob(_A) and a morphism p: G — C such that for all
objects Y € Ob(A),

0 —— Mor(C,Y) —2~ Mor(G,Y) —Ls Mor(F,Y) 4.5)
1s an exact sequence of abelian groups.

Lemma 4.1.1. Let the notation be as in the definition of an abelian category. The conditions (AB3)
and (AB3)’ are equivalent.

Proof. Assume that (AB3) holds. Let F,G € Ob(A) and f € Mor(F,G). Leti: K — F be as
in (a) of (AB3). Let X € Ob(_A). We need to prove that (4.4) is exact. Assume that 27 € Mor(X, K)
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is such that i o &~ = 0. We then have f o (i o ) = 0. By the universal property of i, there exists a
unique morphism X — K such that

X

l \o;‘,zo

K—>F
commutes. The morphisms 0 and % from X to K both make this diagram commute; by uniqueness,
we obtain i = 0. It follows that (4.4) is exact at Mor(X, K). Clearly, the composition of the second

and third maps of (4.4) is zero. Let g € Mor(X, F) and assume that f o g = 0. By the universal
property of i, there exists a unique morphism X — K such that

I

— > F

commutes. Thus, g is in the image of the second map of (4.4). This completes the proof that (4.4)
is exact so that (a) of (AB3)’ holds. Next, let p: G — C be asin (b) of (AB3). LetY € Ob(A). We
need to prove that (4.5) is exact. Let & € Mor(C,Y) and assume that hop = 0. Then (hop)o f = 0.
By the universal property of p, there exists a unique morphism C — Y such that

commutes. The morphisms O and 4 both make this diagram commute; by uniqueness, 7 = 0,
and (4.5) is exact at Mor(C,Y). Clearly, the composition of the second and third maps in (4.5) is
zero. Let g € Mor(G,Y) be such that g o f = 0. By the universal property of p, there exists a
unique morphism C — Y such that

Y
Z]
G —C

commutes. It follows that g is in the image of the second map of (4.5). Hence, (4.5) is exact,
and (b) of (AB3)’ holds.

Now assume that (AB3)’ holds. Leti: K — F be as in (a) of (AB3)’. Letting X = K in (4.4)
yields the following exact sequence:

0 —— Mor(K, K) —<— Mor(K, F) -2~ Mor(K, G)

Now i o idg = i is in the image of the second map of this sequence; hence, the third maps sends i
to zero, i.e., f oi = 0. Assume that H € Ob(A) and g € Mor(H, F) is such that f o g = 0. Since

0 —— Mor(H, K) —2 Mor(H, F) —*» Mor(H, G)



4.1. ABELIAN CATEGORIES 47
is exact, there exists a unique morphism H — K such that

H

I\

K—>F
commutes. This proves that (a) of (AB3) holds. The proof that (b) of (AB3) holds is similar. This
completes the proof that (AB3) holds. O

Proposition 4.1.2. Let A be a category and assume that A satisfies (AB1). Assume that 0,0 €
Ob(A) are such that Mor(F,0) = Mor(F,0") = Mor(0, F) = Mor(0’, F) = 0 for all F € Ob(A).
There exists a unique isomorphismi: 0 — (.

Proof. By assumption, both Mor(0, 0") and Mor(0’, 0) are the trivial group. Let i be the unique
element of Mor(0, 0') and let j be the unique element of Mor(0/, 0). Consideri o j € Mor(0/, (/).
Since Mor(0/, 0) is the trivial group, this set contains a unique element; since idy € Mor(0’,0")
we must have i o j = idg. Similarly, j o i = idg. This proves the assertion. O

Proposition 4.1.3. Let A be a category and assume that A satisfies (ABI). Let F € Ob(A).

(a) Let f € Mor(F,0). If f is a monomorphism, then F is a zero object.
(b) Let f € Mor(0, F). If f is an epimorphism, then F is a zero object.

Proof. (a). Let G € Ob(A). We need to prove that Mor(F,G) = Mor(G,F) = 0. Let h €
Mor(G,F). Then foh = f o0, where 0 € Mor(G, F). Since f is a monomorphism, we
have 1 = 0. We have proven that Mor(G, F) = 0. Next, let & € Mor(F,G). Then h = h o idp.
However, Mor(F, F) = 0 by what we have already proven. Hence, idr = 0. This implies that 4 = 0,
and so Mor(F,G) = 0.

(b). The proof of this statement is similar to the proof of (a). O

Proposition 4.1.4. Let A be a category and assume that A satisfies (AB1) and (AB3). Let F,G €
Ob(A) and f € Mor(F,G). Let K,C € Ob(A), i € Mor(K, F) and p € Mor(G, C) be such that i
is a kernel of f and p is a cokernel of f. Then:

(a) f is a monomorphism if and only if K = 0.

(b) f is an epimorphism if and only if C = 0.
Proof. (a). Assume that f is a monomorphism. We have f o0 = 0 where the first 0 is in Mor(0, F).

Assume that H € Ob(A) and g € Mor(H, F) is such that f o g = 0. We also have f o0 = 0 where
the first 0 is in Mor(H, F). Since f is a monomorphism we conclude that g = 0. This implies that

N

0 —— F

commutes. Since Mor(H,0) = 0, 0 is the unique morphism in Mor(H, 0) for which this diagram
commutes. It follows that 0 — F is a kernel for f,i.e., K = 0.
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Now assume that K = 0. Let H € Ob(A) and g1, g» € Mor(H, F) be such that fog; = f o g».
Then f o (g —g2) = 0. By the universal property of i, there exists a unique element ¢t € Mor(H, K)
such that

H
l , Ygz
K—>F
commutes. Since K = 0 we have ¢ = 0. It follows that g — g = 0, i.e., g1 = g». Thus, fis a
monomorphism.
The proof of (b) is similar. O

Proposition 4.1.5. Let A be an abelian category. Every kernel of A is a monomorphism, and
every cokernel of A is an epimorphism.

Proof. Let F,G € Ob(A) and f € Mor(F,G). Let K € Ob(A) and i € Mor(K, F) be such that i
is a kernel of f. Let H € Ob(A) and hy, h, € Mor(H, F) be such thati o h; =i o hy; we need to
prove that 4| = hy. Sincei o h; =i o hy we have i o (h; — hp) = 0. The composition

0 f

H F G

is the zero morphism in Mor(H, G). Since i is a kernel of f, there exists a unique morphism ¢ €

Mor(H, K) such that

0
K-S F

H

~

commutes. If 0 € Mor(H,K) or h; — hy € Mor(H, K) is substituted for #, then this diagram
commutes; by the uniqueness property of ¢ we have 0 =t = hy — hy. It follows that h; = hy. A
similar argument proves that every cokernel of A is an epimorphism. O

Proposition 4.1.6. Let A be an abelian category. Let F,G € Ob(A) and f € Mor(F,G). The
morphism f is an isomorphism if and only if f is a monomorphism and an epimorphism.

Proof. Assume that f is an isomorphism with inverse g € Mor(G, F). Let H € Ob(A) and
let iy, ho € Mor(H, F) be such that f o h; = f o hy. Then

h]IidFOhl:gOthl:gofohzzidpohzzhz_

It follows that f is an epimorphism. A similar argument shows that f is a monomorphism.
Assume that f is a monomorphism and an epimorphism. By (AB4), there exists H € Ob(.A)
and p € Mor(G, H) such that f is a kernel for p. The composition

F—L,c 0

0

is zero. Thus, we have O o f = p o f. Since f is an epimorphism we obtain O = p. Since p = 0 the
composition

idG P
G

G H
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is zero. Since f is a kernel for p, there exists g € Mor(G, F') such that

S

— s G

Q

—

"

commutes. Thus, f o g =1idg. We also have

fog=idg
fogof=idgof
fogof=f
fogof=foidr
go f=1idp,
where the last equality follows the assumption that f is an epimorphism. m|

Assume that A is an abelian category. Let F, G € Ob(A) and let f € Mor(F, G). Since A is
an abelian category, the morphism f admits a cokernel:

G —2— coker f.
We define an image of f to be a kernel of p:
imf = ker ( G —— cokerf ) . (4.6)
From the involved definitions, the following composition is zero:

imf —— G —2— cokerf. 4.7

Lemma 4.1.7. Let A be an abelian category, let F,G,H € Ob(A), and let f € Mor(F,G)
and g € Mor(G, H). Assume that the composition

F—L.6—%-H 4.8)
is zero. There exists a unique morphism
imf —— kerg (4.9)
such that
imf
| \ (4.10)
kerg — G

commutes. The morphism t: imf — ker g is a monomorphism.
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Proof. We first prove that the composition

imf —— G —&

H 4.11)
is zero. Since g o f =0, i.e., the composition (4.8) is zero, there exists a morphism
cokerf —— H

such that
H

J r
p/ |
G —— cokerf

commutes. Since im f = ker p (by definition), we have p oi = 0 (see (4.7)). Thus,

H
]
G coker f
|
imf

commutes. We now deduce that g oi = 0. Since g oi = 0, from the universal property of ker g,
there exists a morphism as in (4.9) such that (4.10) commutes. Finally, by Proposition 4.1.5,
the morphism 7 is a monomorphism (recall the definition of im f). This implies that 7 is also a
monomorphism. O

Let A be an abelian category, let F,G,H € Ob(A), and let f € Mor(F,G) and g €
Mor(G, H). Assume that the composition

f g

F G

H (4.12)
is zero. From Lemma 4.1.7, there is a canonical monomorphism
imf —— Kkerg

We say that the sequence (4.12) is exact at G if this monomorphism is an isomorphism (by
Proposition 4.1.6 this amounts to asserting that our monomorphism is also an epimorphism).

4.2 The first axiom

Let X be a topological space. We define two categories. The first category is called PSy. We
define the objects of PSy to be

Ob(PSyx) = { abelian presheaves on X }.
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The morphisms of PSx consist of the morphisms of abelian presheaves on X as defined in Sec-
tion 2.4. The second category is called SHy. The objects of SHy are

Ob(SHy) = { abelian sheaves on X }.

The morphisms of SHy are the morphisms of abelian sheaves on X; as mentioned in Section 3.1,
these morphisms are defined exactly as in the case of presheaves. It is straightforward to verify
that PSy and SHy are categories. In this chapter we will prove that PSx and SHy are, in fact,
abelian categories as defined in Section 4.1.

For this, we first define an addition on Mor(#, ) so that Mor(#, () is an abelian group
for 7, G € Ob(PSx) or F, G € Ob(SHy). Let #, ¢ € Ob(PSx) or #, ¢ € Ob(SHy). Let f,g €
Mor(F, ). Let U be an open subset of X. We define

(f+¢)(U)

F(U) GU)

by
(f+8)(U)(x) = f(U)(x) +g(U)(x)

for x € F(U). Evidently, (f + g)(U) is a homomorphism from the abelian group 7 (U) to the
abelian group G (U). We define

9’f+gg

to be the collection
{ 5) "2 gw) }
U c X open
A verification shows that f + g is morphism and that the set Mor(F, (¥) is an abelian group with
this definition.

Turning now to the first axiom for abelian categories, we let Oy be the constant presheaf
corresponding to trivial abelian group O (the group with one element). Thus, Ox(U) = 0 for all
open subsets U of X. See Section 2.2. In fact, Oy is also a sheaf (see p. 37) since the sheafification
of Ox is Ox (see p. 37). This is true because the trivial group contains a single element. We
have Mor(0x, ) = 0 and Mor(F,0x) = 0 for ¥ € PSx and for F € SHy. Also, it is easy to see
that the bilinearity condition (4.1) holds. Thus, with these defintions, both of the categories PSx
and SHy satisfy axiom (AB1).

4.3 The second axiom

Let X be a topological space. We will now verify that the categories PSx and SHy satisfy the
second axiom (AB2) of abelian categories. Let F, G € PSx. Define

F @ @: Open(X) —— A6
in the following way. If U is an open subset of X, then we define

(Fe)U)=5U)egWU)
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If U and V are open subsets of X with V C U, then we define
(FoQ)U) — (FaG)(V)
as the direct sum of the two homomorphisms
FU) — FV) and GU) — G(V) .

It is straightforward to verify that & @ (@ is a presheaf. We also have natural morphisms of
presheaves as follows:

9\g@gy5

Proposition 4.3.1. Let X be a topological space, and let 7, € PSx. The presheaf & & G, with
the above morphisms, satisfies the assertions of (AB2).

Proof. Let #{ € PSx and let
F 7
<
—

G

be morphisms. Let U be an open subset of X. We define

(F Q) U) =FU) & GU) =2 ()

by
h(U)(a,b) = f(U)(a) +g(U)(D)
fora € F(U) and b € G(U). The collection
{ (F @ G)(U) —2 #(U) }
U c X open

is a morphism of presheaves. We claim that

Feo o —15 g (4.13)
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commutes. Let U be a open subset of X and let a € F(U). Then

(h(U) 0 i(U))(a) = h(U)(a,0)
= f(U)(a) + h(U)(0)
= f(U)(a).

Hence, h(U) o i(U) = f(U). Similarly, h(U) o j(U) = g(U). This proves our claim that (4.13)
commutes. Next, suppose that

Fo G~

is a morphism of presheaves such that (4.13) commutes with 4’ in place of h; we will prove
that 7 = h’. Let U be an open subset of X. Leta € F(U) and b € G(U). Then

h'(U)(a,b) = I (U)((a,0) + (0, b))
=K' (U)(a,0)+ K (U)(0,b)
= (U)(i(U)(a)) + ' (U)(j(U) (D))
= (h'(U) 2 i(U))(a) + (h'(U) o j(U))(b)
= f(U)(a) +g(U) (D)
=h(U)(a,b).

It follows that A’ = h. We have proven that F @ @, along with the morphisms i, j, p, and g,
satisfy (a) of (AB2). Similar arguments prove that (b) of (AB2) is also satisfied. O

Proposition 4.3.2. Let X be a topological space, and let 7, G € SHx. Then § & G is a sheaf.

Proof. We need to verify that & @ ¢ verifies the gluing condition (G) and the locality condition (L).
To verify (G), let U be an open subset of X, let {U;};c; be an open cover of U, and let {s;};c; be such
that s; € (F @ G)(U;) fori € I and for all i, j € I we have py, v,nu; (si) = pu;.vnu,(s;). From
the definition of & & @, for each i € I we have s; = (a;, b;) where a; € F(U;) and b; € G(U;).
Also, we see that for all i,j € I we have py, v;nv, (@) = pu;uinu,(aj) and py, veu, (bi) =
pu,uinu; (bj). Since F and @ satisty (G), there exista € F (U) and b € G(U) such that py y,(a) =
a; and pyy,(b) = b; for i € I. Taking the definitions into account, we have py y,(a,b) =
(pv.u,(a), puu,(b)) = (ai, b;) = s; fori € 1. This verifies (G) for ¥ & . The locality condition
is similarly verified. O

Corollary 4.3.3. Let X be a topological space. The categories PSy and SHy satisfy axiom (AB2)
of the definition of an abelian category.

Proof. The category PSy satisfies axiom (AB2) by Proposition 4.3.1. The category PSy satisfies
axiom (AB2) by Proposition 4.3.1 and Proposition 4.3.2. O

4.4 The third axiom

Let X be a topological space. In this section we will prove that PSx and SHy satisfy the third
axiom (AB3) of abelian categories.
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Kernels
Let #, G € PSyx, and let f € Mor(F, ). If U is an open subset of X, then we define
(ker /)(U) ={s € F(U): f(U)(s) =0}. (4.14)

Evidently, (ker f)(U) is an subgroup of F(U) for every open subset of X. Let U and V be open
subsets of X with V C U. Since f is a morphism, the following diagram commutes:

f)
FWU) — Q)
lp?},v lpg,v
f()

FV) — GV)
Here, the vertical arrows are the restriction maps for & and . Let s € (ker f)(U). Then

FW () = gy (FWU)(5)) = pgr,(0) = 0.
It follows that
pgv((ker f)(U)) C (ker f)(V).

We now see that ker f, equipped with the restrictions of the pg v» 1s a presheaf on X with values
in A6, i.e., ker f € PSyx. For each open subset U of X, let

(ker f)(U) 2 5 (U)

be the inclusion function. It is straightforward to verify that the collection

i(U)

i:{ (ker £)(U) —2Ls F(U) (4.15)

}U C X open
is an element of Mor(ker f, ).

Proposition 4.4.1. Let X be a topological space. Let F,G € PSx and f € Mor(F,(). The
composition
f

ker f N G

is the zero morphism in Mor(ker f, ), and for any # € PSx and g € Mor(#,F) such that the
composition
f

#H—s F G

is the zero morphism in Mor(#, ), there exists a unique morphism
# —L ker f

such that

commutes.
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Proof. 1tisclear that f oi is the zero morphism in Mor(ker f, ). Let # € PSx and g € Mor(#(, F)
be such that f og is the zero morphism in Mor(#, (). Let U be an open subset of X. Since fog =0,
we have f(U)og(U) = 0. This implies that g(U)(#(U)) c (ker f)(U). It follows that the function

)

H(U) —— (ker /) (V)

that sends s € #(U) to g(U)(s) is well-defined. Also, it is easy to check that

H —L s ker f :{ F(U) L5 (ker ) (U) }

U c X open

is a morphism of presheaves and is thus in Mor(#, ker f). We see that g = i o j. Finally, assume
that j* € Mor(&#, ker f) is also such that g = io j’. Let U be an open subset of X, and let s € #(U).
Then

g(U)(s) =i()(J (U)(s)) = j (U)(s).
Since j(U)(s) = g(U)(s), we obtain j'(U) = j(U); it follows that j* = j. O

Lemma 4.4.2. Let X be a topological space. Let F,G € SHy, and let f € Mor(F, (). The
presheaf ker f is a sheaf.

Proof. We first verify the gluing condition (G) for ker f. Let U be an open subset of X. Let {U; }es
of U, let {s;}ic; be such that s; € (ker f)(U;) for i € I, and assume that for all i,j € I we
have p*gi ’UmUj(si) = pgj’uiﬂuj(s ;7). Since 7 satisfies the gluing condition (G), there exists s € F (U)
such that ng,-(s) = 5; for all i € I. We need to prove that s € (ker f)(U), i.e., f(U)(s) = 0.
Let i € I. The following diagram commutes:

RGN

FU) — ¢)

: G
lpu U; lpf} U;

7wy L gy

Therefore,

P50 (FW)(S) = FWU (P, (5))

= f(U)(si)
=0.

Of course, we also have pU Ul (0) = 0. By the locality condition (L) for G we have f(U)(s) = 0. This
verifies the gluing condition (G) for ker f. The locality condition for ker f is proved similarly. O

Cokernels

Again let X be a topological space. Let #,§ € PSx and f € Mor(F, ). If U is an open subset
of X, then we define

(peok f)(U) = G(U) /im(f(U)). (4.16)
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Let U and V be open subsets of X such that V C U. Since f is a morphism, the diagram

Fw) L% ¢w)

F G
lpu,v lpu,v

7wy L2 ¢v)

commutes. It follows that

pgy(im(f(U))) € im(f(V)). (4.17)
Define
(peok f)(U) = G(U) /im(f(U)) —— (peokf)(V) = G(V)/im(f(V)) (4.18)
by

G .
r = pgy(r) +im(f(V))
for r € G(U); since we have the inclusion (4.17), this map is a well-defined homomorphism. It is

straightforward to verify that the assignment U +— (pcok f)(U) for U an open subset of X, along
with the restriction maps (4.18), is an element of PSy. For each open subset U of X, let

G(U) 2L (peokf)(U) = G(U) fim(f (V)
be the natural projection. The collection
p= { GW) L2 (peokf)(U) } (4.19)
U c X open
is an element of Mor((, pcok f).

Proposition 4.4.3. Let X be a topological space. Let F,G € PSx and f € Mor(F,(). The
composition
f

¢ —2— peokf

is the zero morphism in Mor(F , pcok f), and for any # € PSx and g € Mor (G, #) such that the
composition

T

gL 5.

is the zero morphism in Mor(F, #), there exists a unique morphism
q
pcokf —— #H

such that

commutes.
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Proof. 1t is clear that p o f is the zero morphism in Mor(F,pcokf). Let # € PSx and g €
Mor (@, #) be such that g o f is the zero morphism in Mor(F, #). Let U be an open subset of X.
Since g o f =0, we have g(U) o f(U) = 0. This implies that g(U) (im( f(U))) = 0. It follows that

the function
q(U)

(peokf)(U) = G(U)/im(f(U)) —— (V)
that sends s + im(f(U)) for s € G(U) to g(U)(s) is well-defined. Also, it is easy to check that
pcok f —1 % :{ (pcok /) (U) 29, #H(U) }
U c X open

is a morphism of presheaves and is thus in Mor(pcokf, #). We see that g = ¢ o p. Finally,
assume that ¢ € Mor(pcok f, #) is also such that g = ¢’ o p. Let U be an open subset of X, and
let s € G(U). Then

gWU)(s) = 4" (U)(p(U)(s)) = q'(U) (s + (imf)(UV)).

Similarly, g(U)(s) = g(U)(s + (imf)(U)), so that ¢"(U) (s + (imf)(V)) = q(U)(s + (imf)(V)).
This implies that ¢’(U) = ¢g(U) and hence ¢’ = q. O

Now assume that #, ¢ € SHy and f € Mor(F, ). Above, we defined the presheaf pcok f €
PSx. We now define

scok f = sheafification of pcok f = I'L(pcokf). (4.20)

We recall that there exists a canonical morphism of presheaves

pcok f T, scok f

as in (3.10). See Theorem 3.3.14 (note that we verified in Section 3.4 that this theorem also holds
in the abelian setting). Let

G —— peokf
be the morphism (4.19), and which has the universal property as in Proposition 4.4.3. We let
¢ -2 scokf (4.21)
be the composition
¢ —2— peokf —— scokf
We have the following result.

Proposition 4.4.4. Let X be a topological space. Let F,G € SHyx and f € Mor(F,(). The
composition

F f

G —2 scokf
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is the zero morphism in Mor(F, scok f), and for any # € SHyx and g € Mor(CG, #) such that the
composition
f

F C %

is the zero morphism in Mor(F, #), there exists a unique morphism

scokf ——— H
such that
H
]
G P, scok f
commutes.

Proof. In this proof we will use Theorem 3.3.14 (note that we verified in Section 3.4 that this
theorem also holds in the abelian setting). We first note that pso f = mopo f =mo (0 =0,
that is, pg o f is the zero morphism in Mor(F,scokf). Let # € SHy and g € Mor((@, #) be
such that g o f is the zero morphism in Mor(F, #). By Proposition 4.4.3, there exists a unique
morphism

pcok f 1

such that
gt

e
G —— peokf

commutes. By Theorem 3.3.14 there exists a unique morphism m € Mor(scok f, #) such that

TN

pcokf —— scok f

commutes. Putting the last two diagrams together, we obtain the following commutative diagram:

#H
/YmT
G =nop scok f
Finally, assume that m’ € Mor(scok f, #) is such that
H
g m,T
G > nop > SCOKf
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commutes. We can rewrite this commutative diagram as the following commutative diagram:

F
%onT
G > pcok f

By the uniqueness property of ¢ we have g = m’ o n so that the following diagram commutes:

NG

pcok f —2— scokf
By the uniqueness property of m, we conclude that m’ = m. O

Corollary 4.4.5. Let X be a topological space. The categories PSx and SHy satisfy axiom (AB3)
of the definition of an abelian category.

Proof. The category PSx satisfies axiom (AB3) by Proposition 4.4.1 and Proposition 4.4.3. The
category SHy satisfies axiom (AB3) by Proposition 4.4.1, Lemma 4.4.2 and Proposition 4.4.4. 0O

Corollary 4.4.6. Let X be a topological space. Let F,G € PSx and f € Mor(F, (). Then

(a) f is a monomorphism if and only if ker f(U) = 0 for all open subsets U of X.
(b) f is an epimorphism if and only if imf(U) = G(U) for all open subsets U of X.

Proof. To begin, we note that we have already verified that PSx satisfies (AB1) and (AB3) (see
Section 4.2 and Corollary 4.4.5).

(a). By Proposition 4.1.4, f is a monomorphism if and only if ker f = 0. The definition of ker f
implies that ker f = 0 if and only if ker f(U) = O for all open subsets of U.

(b). By Proposition 4.1.4, f is an epimorphism if and only if pcokf = 0. The definition
of pcok f implies that pcok f = 0 if and only if im f(U) = G(U) for all open subsets of U. O

4.5 The fourth axiom

Lemma 4.5.1. Let F,G, and H be abelian groups, let f: F — G be a monomorphism, and
let g: H — G be a homomorphism such that g(H) C f(F). There exists a unique homomor-

phismt: H — F such that
X
S

=

—
~

|

G
commutes.
Proof. Since f is injective, there exists a homomorphism f”: f(F) — F such that f(f’(x)) = x

forx € F. Definet: H — F by t(y) = f'(g(y)) for y € H. Then ¢ is a homomorphism and the
above diagram commutes. Since f is a monomorphism, ¢ is unique. O
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Proposition 4.5.2. Let X be a topological space. Let &, G € PSx, andlet f € Mor(F, (). Assume
that f is a monomorphism. Then f is a kernel for the morphism p: G — pcok f.

Proof. Since p: G — pcok f is a cokernel for f the composition

F f

G —— pookf

is the zero morphism in Mor(F, pcok ). Assume that # € PSy and g € Mor(#, §) is such that

g —= G P pcok f

is the zero morphism in Mor(#(, pcokf). Let U be an open subset of X. By Lemma 4.5.1, there
exists a unique homomorphism #(U): #(U) — F(U) such that

#(U)

lz(Uw)

Fw) 22 ¢w)

commutes. The collection
r:{ gy 2 Fw) }
U c X open

is an element of Mor(#, F) and the diagram

#
AN
F

[~

G

commutes. The uniqueness of ¢ follows from the uniqueness of #(U) for U an open subset of X as
in Lemma 4.5.1. o

Lemma 4.5.3. Let F,G, and H be abelian groups. Let f: F — G be an epimorphism, and
let g: F — H be a homomorphism such that g(ker f) = 0. There exists a unique homomor-

phismt: G — H such that

8

F H

/]

G
commutes.
Proof. Definet: G — H by t(y) = g(x) for y € G, where x € F is such that f(x) = y; since f is

surjective, such an x exists. Since g(ker f) = 0, the function ¢ is well-defined. It is straightforward
to verify that ¢ is a homomorphism, that the diagram commutes, and that ¢ is unique. O
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Proposition 4.5.4. Let X be a topological space. Let &, G € PSx, andlet f € Mor(F, (). Assume
that f is an epimorphism. Then f is a cokernel for the morphismi: ker f — F.

Proof. Sincei: ker f — F is a kernel for f, the composition

f

ker f L, F G

is zero. Assume that # € PSx and g € Mor(F, #) is such that the composition

kerf —— F —£ > 7

is zero. Let U be an open subset of X. Then g(U)(ker f(U)) = 0. By Lemma 4.5.3, there exists a
unique homomorphism #(U): G(U) — #(U) such that

Fw) 29 g
F(0) L(U)
G(U)

The collection
1(U)
t=1 GWU) — #(U)
U c X open

is an element of Mor (@, #) such that the diagram

F 2 g

N

G

commutes. The uniqueness of 7 follows from the uniqueness of 7(U) for U an open subset of X as
in Lemma 4.5.3. o

Lemma 4.5.5. Let X be a topological space, and let & € PSx. The morphism of presheaves
F > TLY

is a monomorphism if and only if F is a monopresheaf.

Proof. Assume that n = ny is a monomorphism. Let U be an open subset of X, let {U;};c; be an
open cover of U, and let s, s" € F (U) be such that p‘g. vy (8) = pg' vy, () fori, j € 1. Since n
»Yi J g J

is a morphism of presheaves, a calculation shows that pg,LZ, nw,(n(U) () = pgig;muj(n(U)(s’))
fori,j € I. Since 'L is a sheaf, by the locality condition (L), we have n(U)(s) = n(U)(s’) so
that n(U)(s—s’) = 0. By (a) of Corollary 4.4.6 we have s = s’. It follows that F is a monopresheaf.

Assume that & is a monopresheaf. By Lemma 3.3.13, for every x € X the morphism #, is an

isomorphism and hence a monomorphism. Lemma 3.1.3 implies that n is a monomorphism. O
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Lemma 4.5.6. Let X be a topological space. Let F,G € SHyx and f € Mor(F,Q). If f
is a monomorphism, then the presheaf pcok f satisfies the locality condition (L) and is thus a
monopresheaf.

Proof. Let U be an open subset of X and let {U;};c; be an open cover X. Let r,r" € (pcokf)(U)

be such that ppCOkf (r) = p;&cg(f (r") for all i € I; we need to prove that r = r’. Now fori € [ we

have (pcokf)(U) Q(U)/lmf(U) hence, there exists s,s” € G(U) such that r = s +imf(U)
and ' = s’ + imf(U). To prove that r = r’ it will suffice to prove that s — 5" € 1mf(U). By our

assumption, pg’Ul_(s —s") eimf(U;) foralli € I; for eachi € I, lett; € & (U;) be such that

FWUN(6) = pg . (s = ). (4.22)
Leti, j € I. The following diagram commutes

f)

FUy) GU:)
lpgi’UimUj lp[g;i,UiﬂUj

fWinU;)
F(U; N Uj) — GU;n Uj).

Hence,
fUin U (pg, inu,; (1) = pU v, (F U ()
= pUi,U,ﬂUj (pU,Ui(s =)
G ’
= pU,U,-mUj(S = 5).
Similarly,

G ’
f(Ui N Uj)(pgj,U[mUj (ti)) = pU,U,ﬂUj(s =S )
Since the right-hand sides of these equations are the same, we have
fin Uj)(Pgi,UimUj(li)) =f(Uin Uj)(ng,UimUj(li))-

Since f is a monomorphism, by Proposition 4.1.4 we have ker f = 0. It follows that f(U; N U;) is
injective. Hence,

F F
pU[,UiﬂUj(ti) = pUj,UiﬂUj(ti)'
Since F satisfies the gluing condition (G), there exists ¢t € F (U) such that
P (1) = 1 (4.23)
fori € I. Leti € I. Then by (4.22) and (4.23)
G ’
pU,Ui(S -5 = fU) (1)

= F(U) (04, (1)
= pg, . (FWU) ().
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Here, the last equality follows because

f ()

F(U) == G(U)
et |6,

7wy L% gy

commutes. We have proven that

P50, (5 =) = pgyy, (FU) (@)

for all i € I. Since @ satisfies the locality condition (L) we conclude that s — s = f(U)(¢). This is
the desired result. |

Proposition 4.5.7. Let X be a topological space. Let &, € SHx and f € Mor(F, (). Assume
that f is a monomorphism. The canonical morphism

N=Npcok f

pcok f scok f = I"'L(pcokf)

is a monomorphism.

Proof. By Lemma 4.5.6, the presheaf pcok f is a monopresheaf. Lemma 4.5.5 now implies that n
1s a monomorphism. m|

Corollary 4.5.8. Let X be a topological space. Let &, € SHyx and f € Mor(F, ().
(a) If f is a monomorphism, then f is a kernel for the morphism p;: G — scokf.
(b) If f is an epimorphism, then f is a cokernel for the morphismi: ker f — F.

Proof. (a) Assume that f is a monomorphism. By Proposition 4.4.4, the composition

! G —2 scokf

is zero. Let # € SHy and g € Mor(#(, ) be such that the composition

F

# —5s ¢ -2 scokf

is zero. Since p; is the composition
G SN pcokf —— scokf = 'L(pcokf)

we have no pog = 0. By Proposition 4.5.7, the morphism 7 is a monomorphism. Hence, pog = 0.
By Proposition 4.5.2, the monomorphism f: F — @ is a kernel for the morphism p: G — pcokf.
Hence, there exists a unique morphism ¢ € Mor(#€, F) such that

N

F —C

commutes. This proves that f is a kernel for p;.
(b) This follows from Proposition 4.5.4. |
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Corollary 4.5.9. Let X be a topological space. The categories PSxy and SHy satisfy axiom (AB4)
of the definition of an abelian category.

Proof. This follows from Proposition 4.5.2, Proposition 4.5.4, and Corollary 4.5.8. O
Theorem 4.5.10. Let X be a topological space. The categories PSx and SHy are abelian.

Proof. This follows from Section 4.2, Corollary 4.3.3, Corollary 4.4.5, and Corollary 4.5.9. O
Corollary 4.5.11. Let X be a topological space. Let F,G € SHy and f € Mor(F, §). Then

(a) f is a monomorphism if and only if ker f(U) = 0 for all open subsets U of X.
(b) f is an epimorphism if and only if im f(U) = G(U) for all open subsets U of X.

Proof. We have already verified that SHy satisfies (AB1) and (AB3) (see Section 4.2 and Corol-
lary 4.4.5).

(a). By Proposition 4.1.4, f is a monomorphism if and only if ker f = 0. The definition of ker f
implies that ker f = 0 if and only if ker f(U) = 0 for all open subsets of U.

(b). By Proposition 4.1.4, f is an epimorphism if and only if scok f = 0. Assume that scok /' = 0.
By Proposition 4.5.7, the morphism n: pcokf — scokf is a monomorphism. Since scokf = 0,
by Proposition 4.1.3 we have pcok f = 0. This implies that imf(U) = G(U) for all open subsets U
of X. Finally, assume that imf(U) = G(U) for all open subsets U of X. Then pcokf = 0.
Since scok f = I'L(pcok f), we obtain scok f = 0. O

4.6 Morphisms and stalks

Proposition 4.6.1. Let X be a topological space. Let F,(G € PSx and f € Mor(F, §).

(a) If f is a monomorphism, then fy is a monomorphism for all x € X.
(b) If F is a monopresheaf and f, is a monomorphism for all x € X, then f is a monomorphism.
Proof. (a). Assume that f is a monomorphism. Letx € X and ¢ € ker( f;); we will prove that 7 = 0.

By the definition of 7, there exists an open subset U of X such that x € U and s € F(U) such
that s, =t. Letr = f(U)(s). The diagram

Fw) 2% ¢w)

F G
lpu lp{j

F, Jx G
commutes. Hence,
re = pg(r)
= pg(f(U)(s))
= felpg (5))

= fx(sx)
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= fx(l)
=0.

Since ry = 0, there exists an open subset V of X such that x € V and

g g
pU,V(r) = PU’V(O) =0.

Now the following diagram

Fw) L% ¢w)

lpg,v lpg,v
fv)
FV) — G(V)
commutes. Hence,

FV) (o5, (5) = pi, (FU)(5)

G
= pgy(r)
=0.

By (a) of Corollary 4.4.6, the function f (V) is a monomorphism. Hence, pg v (s8) = 0. This implies
that 5, =0, so thatr = s, = 0.
(b). This is Lemma 3.1.3. O

Proposition 4.6.2. Let X be a topological space, let F,G € PSx, and let f € Mor(F, Q).
Leti: ker f — F be the kernel morphism from (4.15); by Proposition 4.1.5, i is a monomorphism.
If x € X, then

ix((ker f)y) = ker(fy). (4.24)

Proof. Letx € X. Since i is a kernel for f, we have f oi = 0. This implies that the composition

fx

(ker f)y b . G

is the zero homomorphism. Hence, i, ((ker f),) C ker(f;). Lett € ker(f,). Let U be an open
subset of X such that x € U and let x € F (U) be such that s, = t. The diagram

Fw) L% ¢w)

b

commutes. Since f,(t) = 0, by the commutativity of this diagram, (f(U)(s)), = 0. By the
definition of G, Since (f(U)(s)). = 0, there exists an open subset V of X suchthatx € V.,V c U,

and pgv(f(U)(s)) = 0. Now the diagram

f(U)
Fw) L ¢w)
o] |6
f(V)

FV) — G)
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also commutes. It follows that f(V) (pgv(s)) = 0 so that s’ = pgv(s) € ker f(V). Now, by
definition, (ker f)(V) = ker f(V), so that we may also regard s’ as an element of (ker f)(V), and
we have i(V)(s”) = s’. We have the commutative diagram

(ker f)(V) —2Ls F (V)

l l

(ker f)y —>— %

This implies that iy (s.) = (i(V)s'), = 5. Clearly, s, = s,. We conclude that i, (s}) = ?. O

Proposition 4.6.3. Let X be a topological space. Let (E, p) and (E’, p’) be abelian étalé spaces
over X, and let f: (E,p) — (E’, p’) be a morphism of étalé spaces. The following are equivalent.

(a) f is a homeomorphism onto an open subspace of E’.
(b) f isinjective.
(c¢) T'f is a monomorphism of sheaves.
Proof. (a) = (b). This is clear.
(b) = (a). Assume that f is injective. By Lemma 3.3.2, the function f is continuous
(because f is a morphism of étalé spaces), open, and a local homeomorphism. Since f is injective,

it follows that f is a homeomorphism onto f(E), which is an open subspace of E’.
(b) &< (c). Letx € X. The following diagram

TE, —— p~'({x})
ll“fx lﬂp*‘({x})

TE; —— p"'({x})
commutes. For the horizontal isomorphisms see Lemma 3.3.5; these functions send [s] = s,
to s(x). We see that I' f is a monomorphism if and only if f1,-1((,}) is injective. It follows that I' f;
is a monomorphism for all x if and only if f is injective. The equivalence of (b) and (c) follows
now from Proposition 4.6.1. O

Let X be a topological space. Let 7,7, G € PSx. We say that F represents a subpresheaf
of G if there exists a monomorphism F — (. Assume that & and F’ both represent presheaves
of ¢. We say that ¥ and 7’ represent the same subpresheaf of ¢ if there exists a isomor-
phism & — ' such that

F
~
I =
5
commutes. If this holds we write & ~ &’. Still assuming that F and F’ represent subpresheaves
of ¢, we will write & < 7" if there exists a morphism & — 5’ such that

F
| =
/

g/

G
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commutes; if this holds then the morphism F — F’ is a monomorphism.

Lemma 4.6.4. Let X be a topological space and F,F',G € PSx. Assume that F and F' both
represent subpresheaves of G. If F < F" and F" < F, then F =~ F'.

Proof. Since ¥ < F" and F’ < F there exists monomorphisms i: ¥ — ¢ and i": ' — (,
and morphisms j: F — F and j/: F — F such thati =i’ o j and i’ = i o j/. Therefore,
ioidy =i"oj =ioj oj. Sinceiis a monomorphism, we have idy = j’ o j. Similarly, idy = jo j’.
Thus, j and j’ are isomorphisms so that & ~ 5. O

We make entirely similar definitions for SHy.

Proposition 4.6.5. Let X be a topological space, and let F,F', G € SHy. Assume that & and 5’
represent subsheaves of G via the monomorphisms i: & — G andi’': ¥ — G. Then F < F' if
and only if for all x € X we have i,(Fy) C i'(F]).

Proof. If & < G’ then it is clear that iy (F,) C i'.(F/) for all x € X. Assume that this holds. We
have the following diagram of étalé spaces:

Ly —H g Ly

N7

X

By (a) of Lemma4.6.1, forevery x € X, the functioni,: &, — G, is amonomorphism. This implies
that Li is injective; similarly, Li’ is injective. By Proposition 4.6.3, the functions Li and Li’ are
homeomorphisms and the sets (Li)(LF) and (Li")(LF") are open subsets of LG. Our assumption
that iy (F;) c i’.(F/) for all x € X implies that (Li)(LF) c (Li")(LF"). Let j: LF¥ — L5’ be the
composition

(Li")™!

LF L (Li)(LF) LF

Here, we use that Li’ is a homeomorphism onto its image, and that (Li)(LF) c (Li")(LF’). The
function j is a morphism between the abelian étalé spaces L5 and LF’. Evidently, the following
diagram

L5 \Ll‘
| e
LF L’

commutes. It follows that

I'LT

\Hj
rj I'LG

LT 'L’
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commutes. Since F, F’, and ¢ are sheaves, the maps ny, ny/, and ng are isomorphisms by
Lemma 3.3.12. Moreover, by Lemma 3.3.11 the diagrams

¥ L, TLF ¥ 2, LT
il lru and i'l lFLi’
¢, TrLC ¢ . TLC

commute. This implies that the diagram

commutes. Hence ¥ < 7. O

Corollary 4.6.6. Let X be a topological space, and let &, F',G € SHy. Assume that F and F'
represent subsheaves of G via the monomorphisms i: & — G andi’: 3" — G. Then F =~ F' if
and only if iy (F) =i'.(F]) forall x € X.

Proof. This follows from Proposition 4.6.5 and Lemma 4.6.4. O

4.7 Exact sequences

Let X be a topological space. Let #,§ € PSy, and let f € Mor(F, (). Since PSy is an abelian
category, the morphism f admits an image (see (4.6)). We will denote this image by pimf and
refer to as the presheaf image of f. Explicitly, we define

pimf = ker( ¢ —2 peokf ) (4.25)

Here, pcokf and p: G — pcokf are explicitly defined as in (4.16) and (4.19), respectively; see
also Proposition 4.4.3. Also, we use the explicit definition of kernels from (4.14) and (4.15); see
Proposition 4.4.1. We see that if U is an open subset of X, then

(pimf)(U) = imf(U) c G(U). (4.26)

Now assume that F and @ are sheaves, i.e., ¥, € SHy. Since the category SHy is also
abelian, the morphism f admits an image, which will denote by simf and refer to as the sheaf
image of f. We define

simf = ker( G~ scokf ) 4.27)

Here, scokf and ps: G — scokf are explicitly defined as in (4.20) and (4.21), respectively; see
also Proposition 4.4.4. Additionally, we use the explicit definition of kernels as mentioned in the
last paragraph. If U is an open subset of X, then we have

imf(U) c (simf)(U) c G(U). (4.28)
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We also have
fismonic = (simf)(U) =imf(U). (4.29)

To see this, assume that f is a monomorphism. Let r € (simf)(U). Then p,(U)(r) = 0,
so that n(U)(p(U)(r)) = 0. By Proposition 4.5.7 and Proposition 4.5.11, n(U) is an injective
homomorphism. Therefore, p(U)(r) = 0. It now follows that r € im f(U).
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