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Homework grading scheme

Fach problem is worth ten points. Points for a problem are assessed as follows:
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points marking guide

10-9 Correct and complete solution with possibly a small mistake or oversight
8-7 Essentially a correct solution, with a bigger mistake or oversight
6-5 Correct idea for a solution, but substantially incomplete

5-0 Attempted problem, with parts of a solution

Hints

Assignment 2

1.43. If f =320 fi,g = >oitpgi € R[[X1,...,X,]] then fg = 220(23.:0 fjgi—j) (see Sharp
p. 11). Hence, fg =1 if and only if

1 = fogo,
0 = fog1 + f190,
0= fog2 + f191 + f290,

2.5 Use the binomial theorem, which is valid in any commutative ring R: If x,y € R, and n € N,

then
" (n _ n n!

k=0
2.22 It may be useful to use the (total) degree function deg : K[X1, X2] —0 — N (see p. 9 of Sharp).
This function satisfies deg(pq) = deg(p) + deg(q) for non-zero elements p and ¢ of K[X1, Xs].

Assignment 5

For Exercise 3.50 and Exercise 3.51 consider using Corollary 3.49. For Exercise 4.7 first read and

understand Exercise 2.46. For Exercise 4.8 consider using Exercise 4.7.

Assignment 6

For Exercise 4.28, prove that the ideal (X3, XY, Y™) is primary by finding a maximal ideal M and
k € N such that
M* C (X%, XY, Y") C M,

take radicals, and apply Proposition 4.9.

Assignment 8

For Exercise 5.34, assume that R does admit a non-zero nilpotent element x and obtain a contra-
diction via the following idea. Consider I = {r € R : rx = 0}. Then I = (0 : x), and I is thus
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an ideal of R. If I = R, then 1-x = 0, which is a contradiction. Assume that [ ; R, so that I
is a proper ideal. Since [ is a proper ideal, I is included inside a maximal ideal M. Since M is a
maximal ideal, M is a prime ideal. Consider Ry; and the image /1 in Rj; of x under the natural
map. The element /1 is nilpotent. By the hypothesis of this exercise we must have x/1 = 0/1.

Now obtain the final contradiction.

Suggested solutions to selected problems

Assignment 1

1.16 Let R’ be a commutative ring, and let &1,...,&, € R’ be algebraically independent over the
subring R of R'. Let T be a commutative R-algebra with structural ring homomorphism f: R — T

and let aq,...,a, € T. Show that there is exactly one ring homomorphism
g:R[gl,---yl'n] — T

which extends f (that is, is such that g|r = f) and is such that g(&;) = a; for alli=1,... n.

Suggest solution: We begin with some notation. For A\ = (i1, ...,14,) € Ny we will write
S=gean
With this notation every element p of R[(1,...,&,] can be written uniquely in the form
p=Y_ ng
AEN?

where 7\ € R for A € N and r) = 0 for all but finitely many A € Njj (see 1.14). If

g=Y_ &

AeNp

is another element of R[y,...,&,], then we have

pHa= Y (rA+s)&,

AEND

PQZZ Z s | €

)\GNQ A1,A2€Np,
Alt+A2=A

We now define

g:RE,... w0 — T
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by
glp) = > f(ra)e’

AENp

for p as above; here, for A = (i1,...,i,) € Ng we define o = ai‘l ---apn. With p and ¢ as above,

and using that f is a ring homomorphism, we have:

gp+q) =g D (ra+s)¢

AEND

= Z f(?")\ -+ S,\)Oz)‘

AEND

= > fr)at+ ) fsa)ad

AENg AENp

=g(p) + 9(q)-
And:

g =g | D | D rusn &

)\ENS‘ A1,A2€Np,
A +Aa=A

= Zf Z TAy S\ a?

AeN? | A, 2€N,

A +Aa=A
= D fr | | Y] fsa)e?
AEN? AENT
=g(p)g(q)-

It is clear that g(1) = 1. It follows that ¢ is a ring homomorphism. It is also clear that g extends
f. Finally, to prove that g has the required uniqueness property, assume that h : R[{,...,&,] = T
is another right homomorphism such that h|gr = f and h(§;) = «; for all i = 1,...,n. Let p be as

above. We then have

hp)=h| > ne

AEND

= Y h(r)h(&Y)

AENp

= Z flra)a?

AEN?

=g(p)-
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It follows that h = g.

1.19 Let K be an infinite field, let A be a finite subset of K, and let f € K[X1,...,X,], the ring of
polynomials over K in the indeterminates X1, ..., X,. Suppose that f # 0. Show that there exist
infinitely many choices of

(o,...,an) € (K—A)"

for which f(aq,...,ap) # 0.

Suggest solution: We prove this by induction on n. The case n = 1 is clear because a non-zero
polynomial in one variable over K has finitely many distinct roots and K — A is infinite. Assume
that n > 1 and that the statement holds for n — 1; we will prove that it holds for n. There exists

a non-negative integer N such that

N
f(Xla o 7Xn) = ka’(Xla v >X7L71)X7k£
k=0
where fi(X1,...,X,-1) € K[Xy,...,Xp—1] for k=1,...,N, and fn(Xy,...,X,—1) is non-zero.
By the induction hypothesis, there exists (a1, ...,a,_1) € (K—A)""1 such that fy(a1,...,an_1) #
0. Consider the polynomial

N
9(X0) = F(at, a1, Xa) = 3 fulon, - an 1) X
k=0
in the variable X,,. This polynomial is non-zero because fy(aq,...,an—1) # 0. By the case n = 1,

there exist infinitely many «,, € K — A such that g(a,) # 0, i.e., f(ai,...,a,) # 0; moreover, for

any such «,, we have (aq,...,a,) € (K — A)™. This proves the statement for n.

Assignment 2

1.43 Let R be a commutative ring, and consider the ring R[[X1,...,X,]] of formal power series

over R in indeterminates X1,...X,. Let

f=Y_fi€R[[X1,.... X,

i=0
where f; is either zero or a homogeneous polynomial of degree i in R[X1,...,Xy] (for eachi € Ny).
Prove that f is a unit of R[[X1,...,X,]] if and only if fo is a unit of R.

Suggest solution: Assume that f is a unit. Let g € R[[X},...,X,]] be such that fg = 1. Let
g =>.72gi be the standard representation of g. Now

0o 7

f9=>Y_ fi9i-j
0

i=0 \j=
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and this expression is the standard representation of fg in R[[X,...,X,]]. Since fg = 1 we must

therefore have

1= fogo and 0= ijgi_j for i > 0.
j=0

In particular, we see that fogg = 1, i.e., fo is a unit. Now assume that fy is a unit. We inductively

define a sequence (g;)ien, by setting gy = f&l, and for ¢ > 0,

i
gi=—I " | D figiy
i=1

Evidently, each g; is either zero or a homogeneous polynomial of degree ¢ in R[X7,..., X,]. Also,

we have fogo = 1 and for ¢ > 0,
i
0=> figij
§=0
Now define

o, ¢]
9=">_ 9
=0

Then ¢ is in R[[X1,...,X,]], and this is the standard representation of g. Using the above formula
for fg we see that fg = 1.

Assignment 3

2.22 Let K be a field. Show that the ideal (X1, X2) of the commutative ring K[X1, Xa| (of polyno-

mials over K in indeterminates X1, Xa) is not principal.

Suggest solution: Assume that (X7, Xo) = (f) for some f € K[X1, Xo|; we will obtain a contra-
diction. Since X1, X5 € (f), there exist g1, g2 € K[X;, X2] such that

X1=ag1/f, Xo=gaf.

Applying the degree function to the first equation we obtain

deg(X1) = deg(g1f)
1 = deg(g1) + deg(f).

Similarly,
1 = deg(g2) + deg(/f)-

Since deg(f),deg(g1), and deg(f) are in Ny, we must have deg(f) = 0 or deg(f) = 1. Assume first
that deg(f) = 0. Then f € K. Moreover, since f # 0 (otherwise X; = 0 and Xy = 0, which is
impossible), f is a unit in K and hence a unit in K[X;, Xs]. Now f € (X7, X2). Hence, there exist
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hi,ho € K[Xl,Xz] such that
[ =h1X1+ haXo.

Evaluating both sides at X; = 0 and X5 = 0, we obtain f = 0, a contradiction (recall that we just
showed that f is a non-zero constant). Hence, deg(f) = 1. It follows that deg(g1) = deg(g2) = 0,
so that g1, g0 € K. Again, we see that g; and go are non-zero and are hence units in K and hence
units in K[X7, X3]. Now

Xi=91f =919, 02 = 9195 Xa.

That is,
X1 = (9195 ") Xo.

Evaluating both sides at X; = 1 and X3 = 0, we obtain 1 = 0, a contradiction.
2.30 Let I, J be ideals of the commutative ring R. Show that

VIJ=VInJ=VIinVJ.

Let r € v/IJ. Then there exists n € N such that ™ € I.J. Since [J & I NJ we have r™ € I N J.
Hence, r € VI N J. It follows that
vIJCvVINd.

Let r € vVINJ. Then there exists n € N such that ¥ € INJ. Since INJ CITand INJ C J we
have r € VI and r € V/J. Thus, r € VINWVJ. Tt follows that

VInJ CVInvJ.

Let r € VINVJ. Then there exist m,n € N such that v € I and ™ € J. Hence, 1" = ™™ € I.J
so that r € v IJ. It follows that

VInVJcViJ.
We have proven that
VIJCcVInJcVInVJcVIJ.

This implies that

VII=VINnJ=vVInVJ.

Assignment 4

3.29 Determine the prime ideals of the ring 7/60Z of residue classes of integrs modulo 60.
Suggest solution: By 3.28, every prime ideal of Z/60Z is of the form P/60Z where P is a prime
ideal of Z such that 60Z C P. By 3.34, every prime ideal P of Z such that 60Z C P is of the form
P = pZ, where p is a prime of Z such that 60Z C pZ, i.e., p | 60. It follows that the prime ideals
of Z,/60Z are 27,/60Z, 3Z/60Z, and 5Z/60Z.
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3.31 Let R be an integral domain. Recall that for ay,...,a, € R, where n € N, a greatest common
divisor (GCD for short) or highest common factor of ai,...,a, is an element d of R such that
(i) d|a; foralli=1,...,n, and
(ii) whenever ¢ € R is such that ¢ | a; for alli=1,...,n, then c|d.

Show that every non-empty finite set of elements in a PID has a GCD.

Suggest solution: Assume that R is a PID, and let ay,...,a, € R. Consider the ideal (a1, ..., ay,).
Since R is a PID, there exists d € R such that (aj,...,a,) = (d). We claim that d is a GCD of
ai,...,an. Since ai,...,an € (ay,...,a,) = (d), we see that d | a; for i = 1,...,n. Assume that
¢ € Ris such that ¢ | a; for i =1,...,n. Let r; € R be such that a; = r;c for i = 1,...,n. Also, let
Z1,...,Ty be such that z1a1 + -+ 4+ zpa, = d; note that 1, ..., x, exist because d € (ay,...,an).
Then

d=x101 + + Tpap = T1T1C+ - Tprpc = (X171 + -+ TpTp)C.

Thus, ¢ | d.

3.42 Show that an irreducible element in a unique factorization domain R generates a prime ideal
of R.

Suggest solution: Let r € R be irreducible. Then by definition r is non-zero and not a unit.
Since r is not a unit we have (r) & R (otherwise, 1 € (r) so that r is a unit). Let a,b € R be such
that ab € (r); to prove that (r) is a prime ideal it will suffice to prove that a € (r) or b € (r). If
a =0 or b=0, then clearly a € (r) or b € (r); we may thus assume that a # 0 and b # 0. If a or b
is a unit, then also a € () or b € (r); we may thus also assume that a and b are non-units. Since
ab € (r), there exists s € R such that ab = rs. Since R is an integral domain we have rs = ab # 0;
also, s is not a unit (otherwise (r) contains a unit, contradicting (r) & R). As R is a UFD, there

exist irreducible elements p1,...,pk, q1,---,q¢, Y1,---,Yn in R such that

a=p1-- Pk, b=q - q, TS =Y1 Yn;

Since r is irreducible, we may assume that y; = vr for some unit v in R. Since ab = rs we have

Pr1--Prq1--q¢e = VTyY2: " Yn.

Since r is irreducible and R is a UFD, there exists a unit v in R such that r = up; for some
ie{l,...,k} or r = ug; for some j € {1,...,¢}. Hence, p; € (r) for some i € {1,...,k} or ¢; € (1)

1

for some j € {1,...,¢} (recall that u is a unit, so that p; = u™1r or ¢; = u~!r). This implies that

a € (r) or b € (r), as desired.
3.47 Let P be a prime ideal of the commutative ring R. Show that /P™ = P for all n € N.
Suggest solution: Let n € N. Let z € vV P". Then there exits m € N such that 2™ € P". Now

P"™ C P. Hence, 2™ € P. Since P is prime we have x € P. This proves that vV P* C P. Let x € P.
Then 2™ € P™. Therefore, x € v/ P". This proves that P C v/ P". We conclude that P = v/ P™.
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Assignment 5

3.50 Let R be a commutative ring, and let N be the nilradical of R. Show that the ring R/N has

zero nilradical.

Suggest solution: Let x € R/N and assume that n € N is such that 2 = Og/y; we need to prove
that z = Og/n. Let a € R be such that = a + N. Then Og/y = 2" = (a + N)" = a" + N. This
means that N = a™ + N so that a™ € N. Since a™ € N there exists m € N such that (a™)™ = 0,
Le., a" = 0. Therefore, a € N. We now have z = a+ N = N = Og/y, as desired.

3.51 Let R be a non-trivial commutative ring. Show that R has exactly one prime ideal if and only

if each element of R is either a unit or nilpotent.

Suggest solution: Assume that R has exactly one prime ideal P. Let x € R. Assume z is not a
unit; we need to prove that z is nilpotent. Since x is not a unit (z) is a proper ideal, and is hence
included in a maximal ideal; since every maximal ideal is prime and P is unique, (z) C P. Now by
3.49 we have
Vo= () P'= () P'=P

P’eSpec(R) P'e{P}
Hence, 2 € (z) € P = +/0. This implies that « is nilpotent.
Next, assume that every element of R is either a unit or nilpotent. Since R is non-trivial, 0 # 1.
Hence, the ideal 0 = (0) is a proper ideal. Since 0 is proper, the ideal 0 is included in a maximal
ideal; since every maximal ideal is prime, this proves that R has at least one prime ideal. Let P
be a prime ideal of R; we will prove that P = /0, which will show that P is unique. Let r € P.
Since P is proper the element r is not a unit. Hence, r is nilpotent so that r € /0. This proves
that P C /0. Conversely, let r € V0. Let n € N be such that »™ = 0. Then " = 0 € P. Since P
is prime we have r € P. It follows that /0 C P. We conclude that P = +/0 so that P is unique.

3.53 Let P, I be ideals of the commutative ring R with P prime and I C P. Show that the non-empty
set

© ={P' eSpec(R): I C P CP}

has a minimal member with respect to inclusion.

Suggest solution: We partially order © by declaring that P; < P if and only if P» C P;. The
set © is non-empty because P € O. Let Y be a totally ordered non-empty subset of ©; we need
to prove that Y has an upper bound in ©. Let () be the intersection of all the elements of Y. We
claim that @) € ©. Evidently, Q is an ideal because () is the intersection of ideals. Also, it is clear
that I C Q C P; in particular, () is proper because P is proper. Let a,b € R be such that ab € Q.
Assume that a ¢ Q; to prove that @) is prime it will suffice to prove that b € Q. Let P’ € Y; to
prove that b € Q it will suffice to prove that b € P’. Now since a ¢ @ there exists P” € Y such that
a ¢ P”. Consider P’ and P”. Since Y is totally ordered we have P’ C P” or P” C P’. Assume
first that P’ C P”. Now ab € Q C P’. Since P’ is prime we have a € P’ or b € P’. We cannot
have a € P’ for otherwise a € P’ C P”, contradicting a ¢ P”. Therefore, b € P’. Assume now that
P" C P'. We have ab € Q C P”. Since P” is prime we have a € P” or b € P". However, a’ ¢ P";
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hence, b € P” C P’. We have proven that b € P’; thus, @ is a prime ideal of R. It follows now
that @ € ©. Clearly, @ is an upper bound in © for Y. By Zorn’s Lemma the set © has a minimal
member with respect to inclusion.
4.7 Let f : R — S be a surjective homomorphism of commutative rings. Us the extension and
contraction notation of 2.41 and 2.45 in conjunction with f. Note that, by 2.46, Cr = {I € Ig :
ker(f) C I} and Es =ZLg. Let I € Cr. Show that

(i) I is a primary ideal of R if and only if 1¢ is a primary ideal of S.

(ii) When this is the case, I = (\V/I¢)° and VI¢ = (VI)°.

Suggest solution: We first note that by 2.46 we have J¢ = f(J) for J € Cg, and also the maps

extension contraction
C R — 7

— IS and CR

are inverses of each other.
(i) Define g : R — S/I¢ = S/f(I) by g(r) = f(r) + f(I). It is straightforward to verify that g is a

ring homomorphism. Since f is surjective, g is also surjective. Also, for r € R we have

g(r) =0 < f(r)+ f(I) = f(I)
<= there exists « € I such that f(r) = f(x)
<= there exists x € I such that f(r —z) =0
<= there exists x € I such that r — z € ker(f)

— rel (because ker(f) C I).
Thus, ker(g) = I. By the Isomorphism Theorem, g induces an isomorphism of rings
R/I = S/f(I).

Since R/I and S/ f(I) are isomorphic the ideal [ is primary if and only if f(I) is primary (see 4.3).
(ii) We first prove that v/I¢ = (v/I)¢. Since I¢ = f(I) and (vI)¢ = f(v/I), we need to prove that
V() = f(VI). Let s € \/f(I). Let r € R be such that f(r) = s. Since s € \/f(I), there exists
n € N such that s” € f(I). Let a € I be such that s™ = f(a). We now have f(r"™ —a) = 0. Since
ker(f) C I, this implies that 7™ € I. That is, r € v/I. Applying f, we obtain s = f(r) € f(v/1).
We have proven that \/f(I) C f(V/I). Next, let s € f(v/T). Let r € VI be such that f(r) = s.
Since r € v/T there exists n € N such that +* € I. Therefore, s = f(r™) € f(I). This implies that

s € \/f(I), so that f(v/T) C \/f(I). Hence, \/f(I) = f(V/1).

Now

(VI = (VT (because I° = f(I))

FVI)E by V() = f(VI))

=VI (by 2.46; see the above summary).

10
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4.8 Let I be a proper ideal of the commutative ring R, and let P and Q) be ideals of R which contain
I. Prove that Q is a P-primary ideal of R if and only if Q/I is a P/I-primary ideal of of R/I.

Suggest solution: It will suffice to prove that @ is primary if and only if Q/I is primary and that
VQ/I = \/Qi/l Let f: R — R/I be the natural map. Then f is a surjective ring homomorphism.
By 4.7 (i), we have @ is primary if and only if f(Q) = Q/I is primary. It remains to prove that

VQ/I = \/Q/I. Now

Assignment 6

4.21 Let f: R — S be a homomorphism of commutative rings, and use the contraction notation of

2.41 in congunction with f. let I be a decomposable ideal of S.
(i) Let
I=Q:1N---NQ, with /Q;=F for i=1,....n

be a primary decomposition of I. Show that
I“=QiN---NQ, with JQ5=Pf for i=1,...,n
is a primary decomposition of I. Deduced that I¢ is a decomposable ideal of R and that
assp(I¢) C {P°: P € assr(Il)}.

(ii)) Now assume that f is surjective. Show that, if the first primary decomposition in (i) is

minimal, then so too is the second, and deduce that in these circumstances,
assp([€) = {P°: P € assp(])}.

Suggest solution: (i) We have

Also, for 7 € {1,...,n},
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= Pr.

Next we prove that QS is primary for ¢ € {1,...,n}. Let i € {1,...,n}. The ideal QY is proper
(otherwise, 1 € Q¢ so that 1 = f(1) € @y, a contradiction). Let a,b € R and assume that ab € Qf
and a ¢ Qf; we need to prove that b € \/QS. Since ab € QS = f~(Q;) we have f(ab) = f(a)f(b) €
Q;. Since Q; is primary, we have f(a) € Q; or f(b) € VQ;. If f(a) € Q;, then a € f~1(Q;) = Q¢, a
contradiction. Hence, f(b) € v/Q;. This means that b € f~1(v/Qi) = (VQi)¢ = \/QS. Hence, Q5 is
primary. This completes the proof that the above is a primary decomposition of ¢ and thus I€ is
decomposable. We have assg(I¢) C {P¢: P € assr([)} because the above primary decomposition
can be refined to a minimal primary decomposition (see 4.16 or the lecture notes).

(ii) Assume that f is surjective. Assume that the first primary decomposition in (i) is minimal; we
need to prove that second primary decomposition is also minimal. First we verify that Pf,..., PS
are pairwise unequal. Assume that P = P¢ for some i,j € {1,...,n}. Then f7YPR) = F7H(P)).
Applying f and using that f is surjective, we find that P; = P;. As the first primary decomposition

is minimal, we must have ¢ = j. This implies that Py, ..., Py are pairwise unequal. Finally, assume
that ¢ € {1,...,n} is such that
n
@5 c .
j=1
J#1
Let y € ()j=1 Q. Since f is surjective, there exists x € R such that f(z) = y. Since y € Q; for
J#i
j # 1, we have z € f~1Q,) = Q5 for j # i. Therefore, x € (j=; Q5. By the assumed inclusion, we
J#i
get x € Q¢ = f~1(Q;). This implies that y € Q;. We have proven that
n
j=1
i

contradicting the minimality of the first primary decomposition. That assp(I¢) = {P° : P €
assp(I)} follows from definition of assp(I°).

4.22 Let f : R — S be a surjective homomorphism of commutative rings; use the extension
notation of 2.41 in conjunction with f. Let I,Q1,...,Qn, P1,..., P, be ideals of R that contain
ker(f). Show that

I=0Q1N---NQ, with /Q;=PFP, for i=1,...,n (1)
1s a primary decomposition of I if and only if
IF=QiN---NQ; with JQS=PFP for i=1,...,n (2)

is a primary decomposition of I¢, and that, when this is the case, the first of these is minimal if and

only if the second is. Deduce that I is a decomposable ideal of R if and only if I is a decomposable

12
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ideal of S, and when this is the case,

assgp(l) = {P°: P € assg(])}.

Suggest solution: We first note the following fact: if A and B are ideals of R such that ker(f) C A
and ker(f) C B, then f(ANB) = f(A)N f(B). We leave the proof of this as an exercise.

Assume that (1) is a primary decomposition. Then

I=Qin---NQn
f)=f(QiN---NQy)

I°= f(Q1)N---N f(Qn)

I°=QfN--NQs.

Also, if i € {1,...,n}, then f(Q;) = Q¢ is primary and /Q¢ = v/Q; = P¢ by 4.7. Thus, (2) is a
primary decomposition. Assume that (1) is a minimal primary decomposition; we want to prove
that (2) is also a minimal primary decomposition. We first prove that Pf,..., PS are pairwise
unequal. Assume that P? = Pf for some i,j € {1,...,n}; we need to prove i = j. Now since
Pf = P? we have (P7)¢ = (P7)°. Now (Pf)° = f~Y(f(P;)) = P; because f is surjective and
ker(f) C P;; similarly, (P7)¢ = P;. We thus get F; = P;. Since (1) is minimal we must have i = j.
Finally, assume that i € {1,...,n} is such that

n
Qs c e
j=1
J#i
we will obtain a contradiction. Now
n
(@5 ce
=1
J#i
n
FHN) Q) € Q)
j=1
i
n

ﬂ F7HQ5) @
J#

This contradicts that (1) is a minimal primary decomposition.

13
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Next, 4.21 implies that if (2) is a primary decomposition, then (1) is a primary decomposition, and
also if (2) is a minimal primary decomposition, then (1) is a minimal primary decomposition.
The remaining assertion follows immediately from what we have already proven.
4.28 Let K be a field and let R = K[X,Y] be the ring of polynomials over K in indeterminates
X,)Y. In R, let [ = (X3, XY).

(i) Show that, for every n € N, the ideal (X3, XY, Y"™) of R is primary.

(i) Show that I = (X) N (X3,Y) is a minimal primary decomposition of I.
(i1i) Construct infinitely many different minimal primary decompositions of I.

Suggest solution: (i) Let M = (X,Y). For n € Nlet I,, = (X3, XY, Y"). We have

M? = (X3 X%V, XY2 vy} cl = (X3 XY,Y)C M= (X,Y),
M3 = (X3, X?Y,XY2 Y3 C L= (X3 XY, Y) CM=(X,Y)

and if n > 3,
M= (X", X"y, Xy"ly"ycCI,=(X3XY,Y")C M= (X,Y).

Taking radicals, we obtain

VM3 =M C /I, CVM = M,
VM3 =M C /I, C VM,

and if n > 3,

VM =M C /T, C VM = M.

It follows that /I, = M for all n € N. By Proposition 4.9 the ideal I,, is primary for all n € N.
(ii) First we prove that I = (X)N(X3,Y). Tt is clear that I C (X)N(X3,Y). Let g € (X)N(X3,Y).
Then there exist a, b, ¢ € R such that ¢ = X and ¢ = bX3+cY. Now aX = bX>+¢Y. Substituting
X = 0 we obtain 0 = ¢(0,Y)Y3. This implies that there exists d € R such that ¢ = dX. We now
have g = bX? + dXY. Hence, g € I so that (X) N (X3,Y) C I. Tt follows that I = (X) N (X3,Y).
Next, we note that (X) is a prime ideal of R (since R/(X) = K[Y], which is an integral domain).
Also, we have
(X,Y)3 = (X3, X2, XY2 Y3 C (X3Y)C(X,Y).

Taking radicals, we obtain
(X,Y) C V(X3Y) € (X,Y).
Hence, (X,Y) = 1/(X3,Y), which implies by Proposition 4.9 that (X?3,Y) is primary (since (X,Y)

is maximal). It is clear that the primary decomposition I = (X) N (X3,Y) is minimal.
(iii) Using the method of (ii) we find that

I=(X3XY)=(X)Nn(X3 XY, Y")

14
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for n € N. The ideal (X) is prime and primary, and (X3, XY, Y™) is primary with radical (X,Y)
for n € N by (i). Hence, this is a primary decomposition of I. It is straightforward to verify that
this primary decomposition is minimal. The primary decompositions I = (X) N (X3, XY,Y") are
all different because (X3, XY, Y") # (X3, XY, Y™) for m,n € N with m # n.

Assignment 8

5.26. Let the situation be as in 5.23. Show that if the ring R is Noetherian, then so too is the ring
S7IR.

Suggest solution: Assume that R is Noetherian. Let
JICJCJ3C -

be a sequence of ideals in S~'R. Then

(J1)¢ C (Jo)¢ C (J3)¢C---

is a sequence of ideals in R. Since R is Noetherian, there exists n € N such that for £ € N with
kE > n we have (Jp1r)¢ = (Jn)¢ Therefore, ((Jn4x)¢)¢ = ((Jn)€)¢ for k > n. By 5.24 we have
((J2)9)¢ and ((Jp1x)€)® = Jnyk for k > n. Hence, J, i1 = Jp, for k > n. It follows that S™'R is
Noetherian.

Suggest solution: Alternatively, we can argue as follows. Assume that R is Noetherian. Assume
that J is an ideal of S™'R; to prove that S™!'R is Noetherian, it will suffice to prove that J is
finitely generated. Then J¢ is an ideal of R. Since R is Noetherian, J¢ is finitely generated by,
say, ri,...,re JC=(r1,...,7m). We claim that (J€)¢ is generated by r1/1,...,r/1. It is clear that
r1/1,...,r/1 are contained in (J¢)¢. Let = € (J°)¢. By 5.25 there exist a € J¢ and s € S such that

x = a/s. Since a € J¢ there exist c¢1,...,¢ € R such that a = ¢1r1 + - -+ + ¢;r¢. This implies that

r=a/s
=(cri+ - +ery)/s
=cri/s+--+orys
= (er/s)(r1/1) 4 -+ (ct/5)(re/1).
Thus, z € (r1/1,...,r:/1). We have proven that (J¢)¢ = (r1/1,...,r¢/1), so that (J)¢ is finitely
generated. Since J = (J¢)¢ by 5.24, J is finitely generated. This implies that S~!R is Noetherian.

5.34. Let R be a non-trivial commutative ring, and assume that, for each P € Spec(R), the

localization Rp has no non-zero nilpotent element. Show that R has no non-zero nilpotent element.

Suggest solution: Assume that x € R is such that z # 0 and x is nilpotent; we will obtain a
contradiction. Let I = {s € R: sz = 0}. Then I = (0 : z), and I is an ideal of R. Assume that
I = R. Then 1 € I; this implies that 1-x = 0, i.e., z = 0; this is a contradiction. Hence, [ ;Cé R.
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Since [ is a proper ideal, [ is included in a maximal ideal M. Since M is a maximal ideal, M is
prime. Consider Rj; and the image /1 of z in Ry under the natural map R — Rjs. Since x is
nilpotent so is /1. By hypothesis, Rj; does not contain a non-zero nilpotent element. Therefore,
x/1 =0g,, = 0/1. This implies that there exists an element s € S = R — M such that sz = 0. By
the definition of I we have s € I C M. We now have s € M N (R — M); this is a contradiction.

6.11. Let M be a module over a commutative ring R, and let J C M ; let G be the submodule of
M generated by J.

(i) Show that, if J =0, then G = 0.

(ii) Show that, if J # 0, then

n
Gz{Zriji:nGN,rl,...,rnER,jl,...,jnEJ}.

=1

(iii) Show that, if O # J = {l1,...,1;}, then
t
G = {Z’mliirl,...,TtGR}.
i=1

Suggest solution: (i) Assume that J = (). Since G is a submodule of M we have 0 C G. Also, 0
is a submodule of M such that () C 0. This implies that

G = ﬂ N Co.

N submodule of M
such that J C N

Hence, G = 0.
(i) Define
n
W = {Zriji:neN,rl,...,rneR,jl,...,jn € J}.
i=1
We need to prove that G = W. Using the submodule criterion, it is straightforward to verify that

W is a submodule of M that contains J. Hence,

G = ﬂ N CW.

N submodule of M
such that J C N

Since G contains J, G also contains all R-linear combinations of elements of J. Thus, W C GG. We
conclude that G = W.
(iii) Let W be as above, and let

t
U:{Zrili:rl,...,rtER}.

i=1
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Evidently, U C W. Conversely, let x = > "1 | rij; € W. Recalling that J = {l1,...,l;}, we have:

=1
n n
= | D v | A | D i
=1 =1
Ji=l Ji=lt
n n
= Z""zll +--+ Zﬁlt
=1 =1
Ji=l1 Ji=lt
n n
= ZT'L l1++ Zrz lt

Thus, W C U. It follows that W = U.

Assignment 11

7.45 Let G be a module over a non-trivial commutative Noetherian ring R. Show that G has finite
length if and only if G is finitely generated and there exist n € N and maximal ideals My, ..., M,
of R (not necessarily distinct) such that

My --- M,G=0.

Suggest solution: Assume that G has finite length. By 7.36 the R-module G is Noetherian. By
7.13, G is finitely generated. Let

be a composition series. By definition, G;/G;_1 is simple for ¢ = 1,...,n. By 7.32, for each
i € {1,...,n} there exists a maximal ideal M; of R such that G;/G;—1 = R/M; as R-modules. Now
let g € G, and let m; € M; fori € {1,...,n}. Since G,,/Gn—1 = R/M,,, we have r(x+G,_1) = 0 for
r € M, and x € G,,. This implies that m, g € G,,_1. Similarly, m,_1m,g € G,,_2, and continuing,
we find that mq - - - mng € Go = 0. This proves that My --- M,,G = 0.

Now assume that G is finitely generated and and there exist n € N and maximal ideals M, ..., M,

of R (not necessarily distinct) such that

My---M,G=0.
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Since R is a Noetherian ring (by assumption), and since G is finitely generated, G is Noetherian
by 7.22. By 7.30, G is also Artinian (this uses the hypothesis M --- M,,G = 0). By 7.36, G has
finite length.

7.46 Let R be a principal ideal domain which is not a field. Let G be an R-module. Show that G
has finite length if and only if G is finitely generated and there exists r € R with r # 0 such that
rG = 0.

Assume that G has finite length. By 7.45, G is finitely generated, and there exist n € N and

maximal ideals My, ..., M, of R (not necessarily distinct) such that
My--- MG =0.
Since R is not a field, 0 is not a maximal ideal of R. This implies that Mj, ..., M, are all non-zero.

Since R is a PID, we may write M; = (r;) for some r; € R fori € {1,...,n}. Since M; --- M,,G =0
we have rG = 0 with » = r1---7,; note that » # 0 as ry # 0,...,7, # 0, and R is an integral
domain.

Now suppose that G is finitely generated and there exists r € R with » # 0 and rG = 0. If r
is a unit, then G = 0, and G has finite length. Assume that r is not a unit. Since R is a PID,
R is a UFD by 3.39. Therefore, there exist n € N and irreducible elements p1,...,p, € R such
that » = py -+ pn. Let M; = (p;) for ¢« € {1,...,n}. By 3.34, M; is a maximal ideal of R for
i€ {l,...,n}. Since rG = 0 we have M; --- M, G = 0. By 7.45 we now conclude that G has finite
length.
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