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Abstract

In this talk we will motivate the definition of modular forms by considering
an interesting example from number theory. Besides presenting the
definition, we will also describe the connection between modular forms and
the representation theory of GL(2). As a final enticement, we will mention
the astonishing connection, via string theory, between certain modular
functions and the representation theory of sporadic finite simple groups.
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The Fibonacci sequence

The Fibonacci sequence is the sequence

a(0) = 0,

a(1) = 1,

a(2) = 1,

a(3) = 2,

a(4) = 3,

...
a(n) = a(n − 1) + a(n − 2), n ≥ 2.

Mathematicians are fascinated by this sequence, and it even has a journal,
called the Fibonacci Quarterly, that was founded in 1963.

Here is a natural problem: Obtain a formula for a(n).
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A generating function approach

We can solve this problem by using a generating function.

Let q be a formal variable, and define a formal power series

G(q) = a(0) + a(1)q + a(2)q2 + · · · ,

the generating function of the sequence a(n).

How does this yield a formula for a(n)?

We use a(n) = a(n − 1) + a(n − 2) to see that

G(q) − qG(q) − q2G(q) = q.

We now solve this for G(q):
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A generating function approach, continued

G(q) = q
1 − q − q2

= 1√
5

 1

1 − 1 +
√

5
2 q

− 1

1 − 1 −
√

5
2 q

 .

Next, we recall that there is a formal power series identity:

1
1 − aq = 1 + aq + a2q2 + · · · .

Using this, we obtain a formula for a(n):

Brooks Roberts (University of Idaho) February 22, 2024 5 / 40



A generating function approach, continued

G(q) = q
1 − q − q2

= 1√
5

 1

1 − 1 +
√

5
2 q

− 1

1 − 1 −
√

5
2 q

 .

Next, we recall that there is a formal power series identity:

1
1 − aq = 1 + aq + a2q2 + · · · .

Using this, we obtain a formula for a(n):

Brooks Roberts (University of Idaho) February 22, 2024 5 / 40



A generating function approach, continued

G(q) = q
1 − q − q2

= 1√
5

 1

1 − 1 +
√

5
2 q

− 1

1 − 1 −
√

5
2 q

 .

Next, we recall that there is a formal power series identity:

1
1 − aq = 1 + aq + a2q2 + · · · .

Using this, we obtain a formula for a(n):

Brooks Roberts (University of Idaho) February 22, 2024 5 / 40



A generating function approach, continued

a(n) = 1√
5

((
1 +

√
5

2

)n

−
(

1 −
√

5
2

)n)
.

This is a nice solution!

So what did we do? We:
identified an interesting sequence of integers;
formed the associated generating function;
noted that the generating function satisfied an equation;
and finally solved for the generating function, thus obtaining a(n).
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Another sequence

We will apply this approach to another sequence of integers.

Our analysis will not be as simple, but we will arrive at the concept of
modular forms and make connections to parts of analysis, geometry, and
algebra.

What is our sequence?

A basic problem is to say something about solutions of diophantine
equations. Suppose that p(x , y , z , . . . ) is a polynomial with integer
coefficients, and n is an integer.

What can we say about the solutions to

p(x , y , z , . . . ) = n

in the integers? For example, how many integral solutions are there?
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Some quadratic forms

In this talk we will look at the case of certain quadratic polynomials. Let
Q(x1, . . . , xm) be an integral quadratic form:

Q(x) = Q(x1, . . . , xm) =
m∑
i ,j

aijxixj

where A = (aij) is a symmetric matrix with integer coefficients. A simple
example is

Q(x1, . . . , xm) = x2
1 + · · · + x2

m, A =

1
. . .

1

 .

So our question would be: in how many ways can an integer be written as
a sum of m squares?
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Some special quadratic forms

To make the exposition simpler, we’ll actually consider a different family of
examples. We’ll assume that

Q(x) is positive definite, i.e., Q(x) > 0 for real non-zero x ;
Q(x) is unimodular, i.e., det(A) = 1;
Q(x) is even for integral x .

The last condition is equivalent to the diagonal entries of A being even.

Thus the sum of squares example is not covered.

However, our Q(x) are very interesting.
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Our family of quadratic forms

It turns out that such Q(x) are somewhat rare and special (and often
related to famous codes).

For example, a necessary condition is that 8 divides m.

Moreover, the number of such Q(x) is finite for each m:

m Number of Q(x) (up to equivalence)
8 1
16 2
24 24
32 > 80 million

Let’s look at an example.
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The case m = 8

The single Q(x) for m = 8 corresponds to the 8-dimensional lattice E8.

The E8 lattice is

{(a1, . . . , a8) : all ai ∈ Z or all ai ∈ Z + 1
2,

8∑
i=1

ai ≡ 0 (mod 2)}.

A basis for this lattice is:

e1 = (2, 0, 0, 0, 0, 0, 0, 0), e5 = (0, 0, 0, −1, 1, 0, 0, 0),
e2 = (−1, 1, 0, 0, 0, 0, 0, 0), e6 = (0, 0, 0, 0, −1, 1, 0, 0),
e3 = (0, −1, 1, 0, 0, 0, 0, 0), e7 = (0, 0, 0, 0, 0, −1, 1, 0),

e4 = (0, 0, −1, 1, 0, 0, 0, 0), e8 = (1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2).
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The case m = 8, continued

The associated Gram matrix of dot products ei · ej is

A =



4 −2 1
−2 2 −1

−1 2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2
1 2


,

and our quadratic form is then

Q(x) = 2(2x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x2

6 + x2
7 + x2

8 )
− 2(2x1x2 + x2x3 + x3x4 + x4x5 + x5x6 + x6x7 + x1x8).
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The case m = 8, continued

For this A it’s clear that Q(x) is even for integral x , and a calculation
shows that det(A) = 1.

But why is it positive definite?

This is because A came from a lattice.

But there is also a convenient criteria:

Let A(k) be the submatrix of A made of the first k rows and columns.

Then Q(x) is positive definite if and only if det(A(k)) > 0 for k = 1, . . . , 8.

In fact,
det(A) = 1, det (A(k)) = 4, 1 ≤ 1 ≤ 7.

Thus, Q(x) is positive definite.
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The case m = 16

When m = 16 there are two Q(x) (up to equivalence).

One is E8 ⊕ E8.

The other 16-dimensional Q(x) is called D+
16.

It has a definition similar to that of E8.

To learn more about such Q(x), consult the famous book by

J. H. Conway and N. J. A. Sloane

called

Sphere Packings, Lattices and Groups (3rd edition)

and published by Springer in 1999.
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Back to our problem

Given an integer n, we want to say something about the number of
integral solutions to Q(x) = n.

Given our assumptions, if n < 0 or n is odd, then there are no solutions.

So for non-negative integers n we let

a(n) = number of integral solutions x to Q(x) = 2n.

We are going to calculate the sequence

a(0), a(1), a(2), . . .

for m = 8 and m = 16.

Evidently, we have
a(0) = 1.
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An analytic generating function

Let’s define
f (q) = a(0) + a(1)q + a(2)q2 + · · ·

where q is a formal variable.

If our sequence satisfied some linear recurrence relation, then we could
solve for a(n) as we did for the Fibonacci sequence.

Unfortunately, there is no such obvious recurrence relation.

Can we still use f (q)?

Let’s explore: if q is a complex variable, when does f (q) converge?

If q = 1, then it’s not too hard to see that it diverges.

However, we claim that it converges if |q| < 1. Why?
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Convergence for |q| < 1
Let’s begin by noticing the following:

f (q) = a(0) + a(1)q + a(2)q2 + · · · =
∑

x∈Zm
qQ(x)/2.

Consider Q(x). Since Q(x) is positive-definite,√
Q(x)

is a norm on Rm. But all norms on Rm are equivalent! So for some c > 0,

Q(x) ≥ c(x2
1 + · · · + x2

m), x ∈ Rm.

Hence, for |q| < 1,

∑
x∈Zm

|q|Q(x)/2 ≤
∑

x∈Zm
|q|c(x2

1 +···+x2
m)/2 ≤

∑
x∈Z

|q|cx2/2

m

.
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A change of variables

By comparison to the geometric series, f (q) converges for |q| < 1. In fact,
by the Weierstrass M-test, f (q) converges uniformly in closed discs inside
|q| < 1 to an analytic function.

Next, it’s convenient to change variables. We will pre-compose f (q) with

H2 = {z ∈ C : Im(z) > 0} −→ D = {q ∈ C : |q| < 1},

z = x + iy 7→ q = e2πiz = e2πixe−2πy .

6

0 1/2−1/2

-

��
��

�

H2 : Im(z) > 0 D : |q| < 1
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A theta series

Note that the change of variables z 7→ q is

not onto, as it misses 0;
not one-to-one, as any two vertical lines which are one unit apart get
mapped to the same line in the disc.

We now define
θ(z) = f (q), z ∈ H2.

This function is analytic on the entire upper half plane H2.

It is an example of a theta series, and we are going to study it.
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Symmetry properties

The theta series θ(z) has remarkable symmetry properties.

The first symmetry property is that

θ(z + 1) = θ(z), z ∈ H2.

This is easy:

θ(z + 1) =
∑

x∈Zm
e2πi Q(x)

2 (z+1) =
∑

x∈Zm
e2πi Q(x)

2 · e2πi Q(x)
2 z = θ(z).

The second symmetry property is not so obvious. We claim that

θ(−1/z)(−z)−m/2 = θ(z), z ∈ H2.

Note that if z ∈ H2, then −1/z ∈ H2, so the equation is meaningful.
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Symmetry properties, continued

How can we prove

θ(−1/z)(−z)−m/2 = θ(z), z ∈ H2 ?

Both sides are analytic functions on H2.

By the Identity Principle, it would suffice to prove this for z = it, t > 0.

Now for t > 0,
θ(it) =

∑
z∈Zm

e−πtQ(x) =
∑

x∈Zm
gt(x)

where we define
gt(x) = e−πtQ(x), x ∈ Rm.

What we have here is a function on the continuous domain Rm summed
over the discrete lattice Zm ... hmmm where have I seen that ...
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The Poisson summation formula

In Fourier analysis, and the Poisson summation formula.

This formula asserts that ∑
x∈Zm

g(x) =
∑

x∈Zm
ĝ(x)

for rapidly decaying functions g on Rm, where

ĝ(x) =
∫
Rm

g(y)e−2πi x ·y dy

is the Fourier transform of g(x).

(x · y is the usual dot product on Rm, as in the definition of E8.)

We are thus reduced to computing the Fourier transform ĝt(x).
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ĝ(x)

for rapidly decaying functions g on Rm, where
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Completing the argument

To compute ĝt(x) we:

write A = tBB for some B ∈ M(m,R);
make some variable changes;
and then use that the one variable Fourier transform of the Gaussian
e−πx2 is itself, so that

ĝt(x) =
√

t−me−πt−1 txA−1x .

Using the Poisson summation formula we then obtain:

θ(it) = (−it)−m/2θ(−1/it), t > 0.

This proves the second symmetry property

θ(−1/z)(−z)−m/2 = θ(z), z ∈ H2.
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What does this mean?

So far we:
introduced the generating sequence for our sequence;
showed that it has good analytic properties;
and proved that it satisfies two functional equations.

But what does this mean, i.e., is there a conceptual interpretation?

For this, we note that the two symmetries

z 7→ z + 1, z 7→ −1/z

in the functional equations are Mobius transformations. If

α =
[
a b
c d

]
∈ SL(2,R), (i.e., a, b, c, d ∈ R, det(

[
a b
c d

]
) = 1)
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Mobius transformations

then the function
z 7→ α · z = az + b

cz + d
defines an automorphism of H2 because

Im(α · z) = z
|cz + d |2

.

The function z 7→ α · z is called a Mobius transformation.

Moreover, for α, β ∈ SL(2,R),

(αβ) · z = α · (β · z), z ∈ H2.

Thus, SL(2,R) acts on the upper half-plane H2.

Brooks Roberts (University of Idaho) February 22, 2024 25 / 40



Mobius transformations

then the function
z 7→ α · z = az + b

cz + d
defines an automorphism of H2 because

Im(α · z) = z
|cz + d |2

.

The function z 7→ α · z is called a Mobius transformation.

Moreover, for α, β ∈ SL(2,R),

(αβ) · z = α · (β · z), z ∈ H2.

Thus, SL(2,R) acts on the upper half-plane H2.

Brooks Roberts (University of Idaho) February 22, 2024 25 / 40



The meaning of the functional equations

Now evidently,
z + 1 = T · z , −1/z = S · z

with
T =

[
1 1
0 1

]
, S =

[
0 1

−1 0

]
.

We can thus rewrite the functional equations as

θ(T · z) = θ(z),
θ(S · z)(−z)−m/2 = θ(z)

for z ∈ H2.

Can we make this even more conceptual?

Let’s think about the factor (−z)−m/2 in the second functional equation.
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The meaning of the functional equations, continued

Let’s (cleverly) define

j(α, z) = j(
[
a b
c d

]
, z) = cz + d ,

for α =
[ a b

c d
]

∈ SL(2,R) and z ∈ H2.

Then the functional equations are now

θ(T · z)j(T , z)−m/2 = θ(z),
θ(S · z)j(S, z)−m/2 = θ(z)

because

j(T , z) = j(
[
1 1
0 1

]
, z) = 1, j(S, z) = j(

[
0 1

−1 0

]
, z) = −z .
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The meaning of the functional equations, continued

Does this rewrite actual do anything?

Yes.

The automorphy factor j satisfies the cocycle condition

j(αβ, z) = j(α, β · z)j(β, z), α, β ∈ SL(2,R), z ∈ H2.

This suggests we define

(f | α) (z) = f (α · z)j(α, z)−m/2

for α ∈ SL(2,R) and f : H2 → C, because then for α, β ∈ SL(2,R),

(f | α) | β = f | αβ,

i.e., “slash” | is a right action of SL(2,R) on functions on H2.
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The meaning of the functional equations, continued

We can now rewrite the functional equations very simply as

θ | T = θ, θ | S = θ.

Moreover, since “slash” | is a right action we can even say that

θ | α = θ

for α in the subgroup ⟨T , S⟩ of SL(2,R) generated by T and S.

But what is ⟨T , S⟩? Can this get even simpler?!?

Yes: ⟨T , S⟩ = SL(2,Z). So, finally,

θ | α = θ, α ∈ SL(2,Z).

An analytic function on H2 satisfying this equation, and having a Fourier
expansion like that of θ, is a modular form (of weight m/2 for SL(2,Z)).
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Back to our problem

We found that θ satisfies an amazing functional equation.

But can this actual help us determine the sequence a(n)?

The answer turns out to be yes (for m = 8 and m = 16), for two reasons.

Let
Mm/2 = the C vector space of modular forms

of weight m/2 for SL(2,Z).

Then:
dim Mm/2 < ∞, and dim Mm/2 is known.
There are other ways to get elements of Mm/2.

Let’s first consider dim Mm/2.
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The residue formula

To understand dim Mm/2 it’s
helpful to first understand the
action of SL(2,Z) on H2.
Let F be as drawn. Then F is
a fundamental domain:

every point of H2 is
equivalent via SL(2,Z) to
a point of F ;
distinct points of F are
inequivalent.

In fact, we obtain a tesselation
of H2 in terms of hyperbolic tri-
angles that are the images of F
under SL(2,Z), as illustrated.

i

F TT −1

TST −1S S

STS ST ST −1 ST −1S

ρ

0 1−1
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The residue formula, continued
Now let f ∈ Mm/2 with f ̸= 0, and let

f (z) =
∞∑

n=0
b(n)qn

be the Fourier expansion of f . Define

v∞(f ) = smallest n such that b(n) ̸= 0.

For example, v∞(θ) = 0.

Also, for p ∈ H2, let vp(f ) be the order of vanishing of f at p.

Using the residue theorem one can then prove the residue formula:

v∞(f ) + 1
2vi(f ) + 1

3vρ(f ) +
∑
p∈F
p ̸=i ,ρ

vp(f ) = m
24 .
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dim Mm/2 = 1 for m = 8 and m = 16

We claim that this yields dim Mm/2 = 1 for m = 8 and m = 16.

Since θ ∈ Mm/2 we already know dim Mm/2 ≥ 1.

Suppose that dim Mm/2 > 1.

We can then make a non-zero element f of Mm/2 with v∞(f ) ≥ 1.

But then

1 ≤ v∞(f ) + 1
2vi(f ) + 1

3vρ(f ) +
∑
p∈F
p ̸=i ,ρ

vp(f ) = m
24 < 1,

a contradiction!

Hence,
dim Mm/2 = 1 for m = 8 and m = 16.
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Another construction

So now we know that dim Mm/2 = 1 if m = 8 or m = 16.

Is there another way to construct elements of Mm/2?

Yes. Define
E (z) = 1

2ζ(m/2)
∑

(a,b)∈Z2,
(a,b)̸=(0,0)

1
(az + b)m/2

for z ∈ H2. This is an Eisenstein series.

This converges and satisfies the two functional equations.

Moreover, it has a Fourier expansion so it’s in Mm/2.

From complex analysis one has

1
z +

∞∑
b=1

( 1
z + b + 1

z − b

)
= πi − 2πi

∞∑
n=0

qn.
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Another construction, continued
Some calculations now show that

E (z) = 1 + (2πi)m/2

2ζ(m/2)(m/2 − 1)!

∞∑
n=1

σm/2−1(n)qn,

where
σm/2−1(n) = sum of the positive divisors of n,

each raised to the m/2 − 1 power.
When m = 8 we get

E (z) = 1 + 240
∞∑

n=1
σ3(n)qn,

and when m = 16 we get

E (z) = 1 + 480
∞∑

n=1
σ7(n)qn.
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The solution

We are now ready to solve the problem of determining the a(n) when
m = 8 or m = 16.

Since dim Mm/2 = 1 when m = 8 or m = 16, we must have

θ(z) = cE (z)

for some c ∈ C. But we know that a(0) = 1; comparing Fourier
expansions, we get c = 1.

Thus the solution is a(0) = 1, and if n > 0, then

a(n) =

# integral
solutions

to
Q(x)=2n

=


240 ×

(
sum of the cubes of the
positive divisors of n if m = 8

)
,

480 ×
(

sum of the seventh powers of the
positive divisors of n if m = 16

)
.
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The solution, continued

The theta series are now

m = 8 : θ(z) = 1 + 240 q + 2160 q2 + 6720 q3 + · · ·
m = 16 : θ(z) = 1 + 480 q + 61920 q2 + 1050240 q3 + · · · .

Interestingly, if m = 16, then the number of integral solutions to
Q(x) = 2n is the same for the two non-equivalent Q(x).
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The big picture
This was a nice solution!

But how relevant are modular forms, really?

In fact, modular forms are connected to almost all parts of mathematics.

One way to see a hint of this is to notice that SL(2,R) acts transitively on
H2, and that the stabilizer of i is

SO(2,R) =
{[

a b
−a b

]
: a2 + b2 = 1

}
.

Thus,
SL(2,R)/SO(2,R) ∼−→ H2, gSO(2,R) 7→ g · i .

Given a modular form f of weight k, one can then define a corresponding
function

ϕ : SL(2,R) → C, ϕ(g) = f (g · i)j(g , i)−k , g ∈ SL(2,R).
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The big picture, continued

The function ϕ : SL(2,R) → C has a number of properties, including that

ϕ(αg) = ϕ(g), α ∈ SL(2,Z), g ∈ SL(2,R).

In fact
ϕ ∈ L2(SL(2,Z)\SL(2,R)).

Since L2(SL(2,Z)\SL(2,R)) is a unitary representation of SL(2,R) via
right translation, we find that the study of modular forms is closely related
to the study of certain (automorphic) representations of SL(2,R).

In practice, R is replaced by A, the adeles of Q, so that all completions of
Q are on the same footing, and SL(2) is replaced by a reductive linear
algebraic group G defined over Q. In this setting there is big network of
ideas connecting automorphic representations, Shimura varieties, and
Galois representations.

At the same time, plenty of work is still being done in the classical setting.
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Further reading and viewing

Quanta magazine
www.quantamagazine.org

is an excellent source for expository articles about mathematics, physics,
and other disciplines. This magazine is supported by the Simons
Foundation.

Quanta often has interesting stories about modular forms, including an
article about the connections between the representation theory of
sporadic finite simple groups, string theory, and modular forms.

Search for “modular forms” at the Quanta website.

Quanta also has a nice YouTube channel.

At the channel search for “The Biggest Project in Modern Mathematics”.
This video is about modular forms and their applications.
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