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1. Introduction

In his 1980 paper [Y], Yoshida studied certain explicit theta liftings of Hilbert modular forms of
weight (2, 2n + 2) for real quadratic extensions of QQ to Siegel modular forms of degree 2 and weight
n + 2 for the Siegel congruence subgroup I'p(N) and an appropriate Dirichlet character x. Yoshida
calculated the action of the Hecke operators T(1, 1, p, p) and T(1, p, p, p?), defined below, on these
lifts for p { N, though Yoshida did not determine when these lifts are non-zero.

In this paper, we study an analogous problem. Given a Hilbert modular form of weight (2, 2n + 2)
we prove the existence of a non-zero Siegel modular form of degree 2 and weight n + 2 for the
paramodular congruence subgroup. Our main theorem completely characterizes the resulting Siegel
modular form, including the Hecke eigenvalues at every rational prime p.

Main Theorem. Let E be a real quadratic extension of Q with real archimedean places ooy and ocoy. Let g
be a cuspidal irreducible automorphic representation of GL(2, Ag) with trivial central character. Let Dy be

* Corresponding author.
E-mail address: jenfns@uidaho.edu (J. Johnson-Leung).

0022-314X/$ - see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.,jnt.2011.08.004


http://dx.doi.org/10.1016/j.jnt.2011.08.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jnt
mailto:jenfns@uidaho.edu
http://dx.doi.org/10.1016/j.jnt.2011.08.004

544 J. Johnson-Leung, B. Roberts / Journal of Number Theory 132 (2012) 543-564

the level of mo. Assume that g is not Galois-invariant and 7o o, = D2 and 7o 0, = Dont2 withn >0a
non-negative integer and Dy the holomorphic discrete series representation of PGL(2, R) of lowest weight k.
Let N = d%N(’é(‘ﬁo), where dg is the discriminant of E/Q. Then there exists a non-zero Siegel paramodular
newform F : $); — C of weight k = n + 2 and paramodular level N such that:

i) For every prime p,

T(1,1,p,p)F =p*3>ApF and T(1,p,p,p?)F = p** 3 pu,F (1)

where the Hecke eigenvalues A, and 1, are determined by the Hecke eigenvalues of g as follows. If p
splits, let wq and w> be the places above p. If p is non-split, let w be the place above p.
a) Ifvalp(N) =0,

o {p()»w] + Aw,) if pis split, _ {pz + PAw Aw, — 1 if pis split,
P 0 if p is not split, P —(p? +piw+1) if pisnotsplit.

b) Ifvaly(N) =1, then p splits and valy, (Mo) = 1, valy, (D) =0, and
)‘-I):p)‘-W1 +(p+1))\-W2’ /’LP:p)\'W1)‘-W2~

c) Ifvalp(N) > 2, then:
p inert:

p ramified:

Y _{0 ifvaly (Mo) =0,
PP T g ifval, (1) > 1
p split and valy,, (Np) < valy, (No):

0 ifvaIW1 MNo) =0,

An = A A s = i
p=PGw; +Aw,) Hp =—p2 ifvaly, (D) > 1.

For particular 7o, Ap and 1, are given in Proposition 4.2.
ii) Forevery prime p|N, let U, be the Atkin-Lehner operator, defined below. Then,

FlxUp =&,F (2)
with

_ s(l/Z,ﬂo_wl,wp,dx%)s(l/Z,no,wz,wp,dx%) if p is split,
P £(1/2, 7w0,w. Yw, dXy,, )WE,, /g, (1) if p is not split,

where vy, is an additive character of E, with conductor o,. For particular o, &, is given in Proposi-
tion 4.2.
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iii) For every prime p, we have an equality of Euler factors

Lp(s+k—§,F):Lp(s,7ro), (3)

where k =n+ 2 and Ly (s, F) is defined below for every finite place p of Q. Moreover, we have the func-
tional equation

AQRk—2—5,F)= (—1)"(]‘[&,,)1\15*"“/1(5, F) (4)

PIN

where the completed L-function is defined as the product

AGs. F)= @) T (s—k+2) [] Lp(s. F).

p<oo

Our main theorem has potential applications to arithmetic geometry. For example, Consani and
Scholten [CS] studied the four dimensional Galois representation p of Gg on the étale cohomology
H3(5(@, Q¢(v/5)) of the desingularization X of a quintic three-fold X. Consani and Scholten showed

that p is induced from a representation o of Gal(Q/Q(~/5)). By work of Yi [Yi], o corresponds to
an automorphic representation g, as in our main theorem, with n =1 and 9% = p2p3p§ = (30). As
a consequence of our main theorem, there exists a non-zero Siegel modular form F of degree 2 and
weight 3 for the paramodular group of level N = 223254 such that A(s, F) = A(s, p).

The paper is organized as follows. In Section 2, we introduce notation and definitions which will
be used throughout the paper. Section 3 supplies the proof of the Main Theorem. This proof depends
on certain local results which are proved in Sections 4 and 5. In Section 4, we explicitly tabulate
the local L-packets, Hecke eigenvalues, and epsilon factors used in the proof of the Main Theorem.
The technical heart of the paper is in Section 5, where we calculate the gamma factors of the Novod-
vorsky zeta integrals of a generic supercuspidal representation of GSp(4, F) for a nonarchimedean
local field F.

2. Notation and definitions

Let

L")

We define the algebraic Q-group GSp(4) as the set of all g € GL(4) such that ‘gJg = xJ for some
x € GL(1); we call x the multiplier of g and denote it by A(g). The kernel of A : GSp(4) — GL(1) is the
symplectic group Sp(4). For N a positive integer we define

Z NZ 7Z Z

Z Z Z N7z
para _

NZ NZ NZ Z
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Let p be a prime of Q. For n > 0 a non-negative integer define the local paramodular group K(p") as
the group of all k € GSp(4, Q;) such that

Zp P"Lp ZLp Lp

Lp Lp Zp p"Zp

Zp P"Zp Zp Lp
p"Zp P"Zp P Zp Ly

ke

and det(k) € Z;. Note that K(p®) = GSp(4, Zp). We have

TP (N) = GSp(4,Q) NGSp(d. R)™ T K(p*™).

p<oo

Here, p*3r®) is the exact power of p dividing N, and GSp(4, R)™ is the subgroup of g € GSp(4, R)
such that A(g) > 0. Let $), be the Siegel upper half-space of degree two. Then GSp(4, R)™ acts on $);
by

g(2)=(AZ+B)(CZ+D)"", g:[/g g] Z e

and we define j(g, Z) =det(CZ + D). If k is a positive integer, g € GSp(4,R)™, and F:§, — C is a
function we define

(FIk&)(Z) = 1(2)"i(g, 2)*F(8(2)). Z €.

A Siegel modular form of degree 2 and weight k with respect to I"'P¥(N) is a holomorphic function
F: $; — C such that F|yy = F for y € I'P¥3(N). Let M (I"P¥¥(N)) and Si(I"P¥"¥(N)) be the spaces of
all Siegel modular forms or cuspforms of degree 2 and weight k with respect to I"P¥@(N), respectively.
For each prime p, we define two Hecke operators T(1,1, p, p) and T(1, p, p, p%) on Mi(I'P¥3(N)) as
follows. Let

Fpara(N) Fpara(N) — I_l prara(N)hi
p
and

Fpara(N) Fpara(N) — I_l Fpafa(N)h;

p

pZ

be disjoint decompositions. Note that if p+ N then
rP7(N)diag(p, 1, p, p?) PP (N) = '™ (N) diag(1, p, p*, p) TP (N).

For F € My(N) set

1

T(1.1.p.p)F=p* 32> Fihi,  T(1.p.p.p?)F =p** > Flh’.
i J
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If N =1, this definition is the same as in, for example, (1.3.3) of [A1]. For each prime p dividing N,
choose a matrix y, € Sp(4, Z) such that

1 1

Vo= . 1 mod p*»™ and y, = 1 mod Np~ Vel

-1 1

and define

pvalp(N)
valp (N)
UP =Vp P 1
1

It can be verified that U, normalizes I"P*(N) and that U is contained in pYalp(N) Ppara (N 5o that
F— F| U, defines an involution of Si(I'P**(N)) and M (I"P¥¥(N)). Let Sp°W(I"P*"¥(N)) be defined
as in [RS2]. Let F € Sy (I'P*#(N)) and assume that

T(1,1,p.p)F =rppF.  T(1.p.p.p*)F=urpF.  FlUp=c¢rpF.
Then we define Ly(s, F) as follows:
i) If valp(N) =0, then

Lp(S, F)*] -1— AF,ppis + (pMF,p + p2’<73 + p2k75)p72$ _ p2k73)\F,pP73s + p4k76p74s.

i) If valp(N) =1, then

Lp(s, F)71 -1— (A‘F,p + pkf?:gF,p)p*S + (PMF,p _|__ p2k73)p725 +€F’pp3’<75p735.

iii) If val, (N) > 2, then

—2s

2k—3)p

Lp(s, F) ' =1—2ppp~° + (Ptrp +p

Note that the case val,(N) = 0 agrees with the classical Euler factor at p as given in [A1], The-
orem 3.1.1. The work [Al] uses T(p?) instead of T(1,p, p, p?). However, one has the relation

pT(,p,p,p*) +p(*+ DT (p, p,p. p) =T(p)* — T(p?*) — p*T(p, p, p, p) by 3.3.38 of [A2]. Compare
also Theorem 2 of [Sh]. The definitions in the cases val,(N) > 1 are motivated by the results of [RS1].

Additional notation. For k a positive integer, we let Dy denote the holomorphic discrete series rep-
resentation of PGL(2,RR) of lowest weight k. Suppose that L is a nonarchimedean local field of
characteristic zero with ring of integers o and prime ideal p = wo C 0. We define the character
v:L* — C* by v(x) = |x| where |- | is the absolute value such that || = |o/p|~!. If x : LX — C*
is a character, then a(y) is the smallest non-negative integer n such that x (1 + p") = 1, where we
take 1+ p% = 0. Let (7, V) be a generic, irreducible, admissible representation of GL(2, L) with triv-

ial central character. For n a non-negative integer, let Ip(p") be the subgroup of [‘;Z} in GL(2,0)

such that c=0 (p"). The group Ip(p™) is normalized by the Atkin-Lehner element [_wﬂ 1]. We de-
fine a(t) to be the smallest non-negative integer n such that V/o®" #0; we call p?@ the level
of 7. The space VIo®"™) is spanned by a non-zero vector v. We have T([,wn 1])1/ = ¢grv for
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er=¢€(1/2,t,¢y) € {£1}, where ¢ : L - C is a character with conductor o. We call ¢; the Atkin-
Lehner eigenvalue of . We also have T(p)v =A.v for some A; € C. Here, T(p)v =) ; T (h;)v, where
Lo @) [7 L To®™) = hilo(p*™) is a disjoint decomposition. We call A, the Hecke eigenvalue

of t. The group GSp(2n) is defined with respect to [_1 In ] and 1gspn) and Stgspny are the trivial
and Steinberg representations of GSp(2n, L), respectively.

3. Proof of the Main Theorem

Proof of the Main Theorem. We begin by constructing a certain cuspidal, irreducible, admissible
representation ;t of GSp(4, A) with trivial central character; the desired Siegel modular form will
correspond to a particular vector in ;. For every place v of Q, define mp, = ®w\v”0,w- Let
@(mov) : W’FV — GSp(4, C) be the L-parameter associated to 7o, as in (5) and (6); if v is non-
split in E, we take n = 1. By [B] the representation g is tempered for all finite places w of E.
Let IT(¢(mo,v)) be the L-packet of tempered, irreducible, admissible representations of GSp(4, Qy)
with trivial central character associated to ¢ (o y) as in [R]. For finite v = p, the packet IT(¢(7o,p))
coincides with the packet associated to ¢ (g p) in [GT], and contains a unique generic representation
mp of GSp(4,Qp). It is known that IT(¢ (g o)) contains the lowest weight representation s, with
k =n + 2; for the precise definition of m, see [AS], p. 184. We set m, = 7. Define m to be the
restricted tensor product

7 =Qm.
v

By Theorem 8.6 of [R], w is a cuspidal, irreducible, admissible, automorphic representation of
GSp(4, Ag) with trivial central character.

To define the appropriate vector in s, for each finite prime p of Q, let @, be the local paramodular
newform in 7, and let @, € T be the non-zero smooth vector as in Lemma 3.4.2 of [AS]. Note
that @, exists and is unique up to scalars by [RS1]; we may assume that for almost all p, &, is
the unramified vector used to define the restricted tensor product. Also, oo (U) P = j(u, [) ¥ Py for

u e U(2), where
i
[ Jen
and U(2) is the subgroup of u € Sp(4, R) such that u(I) =I. We set
® =) Py
v

For each finite prime p of Q, because @, is a local paramodular newform in 7, we have T1 0(p)®) =
Ap®p and T 1(p)Pp = pPp for some complex numbers A, and wp and 7p(up)Py = &P, for
some ¢&p € {£1}; here, T 1(p) and T1o(p) are the Hecke operators from Chapter 6 of [RS1] and u,
is the Atkin-Lehner element defined in (2.2) of [RS1]. In fact, Ap, ip and &p are as in i) and ii) by
Proposition 4.2.

Next, define F : 5, — C by F(Z) = A(h)~*jh, D¥®(hs) where h € GSp(4,R)* is such that
h(I) = Z. Then F is holomorphic by Lemma 3.2.1 of [AS], and an argument shows that F €
SpEV(I'PA(N)). A computation shows that

T(1,1,p,p)F =4pp*>F,  T(1,p,p, p?)F = upp**>F.

A similar computation shows that F|,U, = &, F because 7, (up)®p = £p®,. This proves i) and ii). To
prove iii), we note that the equality (3) follows by comparing the Euler factors at each finite prime
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p of Q and using (1), (2) and (9). To deduce (4), we recall the functional equation for the completed
L-function of mg (e.g., Theorem 6.2 of [J]),

L(1 —s,mg) =€(1 —5s,mp)L(s, o).

For every rational prime p, we have a canonical additive character ¥, (x) = e~2TiA® where A is the
composition

A:Qp— Qp/Zy — Q/Z— R/Z,

and Yo (X) = e27* Then the function ¥ (x) = [T, ¥v(xv) defines a character of A/Q. For the quadratic
extension E, we have the character ¥ = v o Trgyq of Ag/E. For each finite prime, w of E, we define

n(yrw) to be the least non-negative integer n such that &W(pv“,") = 1. The epsilon factor is computed
via

e(s, o) = (=)™ l_[ &(s, wo.w, Yw) ([Ge], Theorem 6.16)

w<oo

7 —s(2 ~w w
=" ] [Te@wo.w- ww,dx]/;w)qws( nwra@ow) - ([Rohr], 11 Prop.)
pIN wip

- 7 - 2 ~W w
= (D" [T e@p. ¥p. dry)p0 [T e(@ow. rw. dig, ), " 0D

pIN pIN
split nonsplit

=(=D" [ ] e@p. ¥p. dxy,)p~>*@)
pIN
split

x [ e@ow. dw.dxy, gy """ p=s@en-20E/ LD (by (7))

PIN
nonsplit

=(=D"[[e(@p. ¥p. dxy,)p~**¢» ([Rohr], 11 Prop., g = pdEw/Qp))
pIN

= ()" [Tepp™ @@ 12 (by (8))
pIN

1/2—
= (=D"N'2= ] ep.

PIN
Finally, the archimedean Euler factors of g are given by
L(S, 700,00, )L(S, T0,00,) = ) * " 1M (s +1/2) (s + 2n + 1)/2).
Substituting into the functional equation for g yields (4). O
4. Local results
Some definitions. Throughout this section let F be a nonarchimedean local field of characteristic

zero with ring of integers o, let p be the maximal ideal of o with p = @ o, and let g be the number
of elements of o/p. Also, let E be a quadratic extension of F with Gal(E/F) ={1,0} and associated
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quadratic character wg,r. The residue class degree of E/F is denoted by f = f(E/F) and the valuation
of the discriminant by d =d(E/F). Let

1 1

-1 1

We note that in the work [RS1] the group GSp(4) is defined with respect to J’, while throughout this
work we define GSp(4) with respect to J, as in Section 2. However, it is easy to see that conjugation
by K defines an isomorphism between the two realizations, in either direction.

Two families of L-parameters for GSp(4). We now consider two families of L-parameters for GSp(4)
over F. The first family, which we will call the split case, is parameterized by pairs (71, 72) where
w1 and my are irreducible, admissible representations of GL(2, F) having the same central character,
while the second family, which we refer to as the non-split case, is parameterized by triples (E, 7o, 17)
where E is a quadratic extension of F, 1y is an irreducible, admissible representation of GL(2, E) with
Galois invariant central character wy,, and 7 is a character of F* such that @, =1 o NE.

To define the parameter (71, m2) : Wi — GSp(4, C) associated to a pair (71, ), let @1 : Wi —
GL(2,C) and ¢ : W — GL(2,C) be the L-parameters of 71 and 7, respectively. We define

aq b1
. a by
@@, T2)(X) = o dy
C2 dz
for ¢1(x) = di by V2(x) = a by and x € W} (5)
1 c1 di |’ 2 c dy Fr

Thus, ¢ (1, 7m2) is the symplectic direct sum of ¢ and @,.

To define the L-parameter ¢(E, mo, 1) : Wi — GSp(4, C) associated to a triple (E, o, 1), let ¢q :
W — GL(2,C) be the L-parameter of mp, and let Vo be the space of ¢g. Let go be a representative
for the nontrivial coset of W;\W}. We consider the representation of W induced from ¢g which
we can realize as Vo @ Vg via the isomorphism

w1 ~
IndWZ po— V=V Vp

that sends f to f(1) ® f(go).
Notice that 7 can also be considered as a character of W} with the property that n|W/E =det(go).

We define a non-degenerate symplectic bilinear form on V by
(vi @ va. vi @ vh) = n(go)(v1., Vi) + (v2. v).

A computation shows that (x-v,x-v') =n)(v,v') for v,v' € V and x € Wy. The L-parameter
@(E, o, n) is defined to be the representation V with this symplectic structure. We can choose a
symplectic basis for V so that for y € W7,

a 1n(g0)~'b
a b’
n(&o)c d
c d

@(E, o, M (y) =



J. Johnson-Leung, B. Roberts / Journal of Number Theory 132 (2012) 543-564 551

a b _ a b
forfﬂo(y)z[c d} andwo(goyg()]):[c, d,], and

1

_|ao 1(g0)ho 2y _ | a bo
@(E, 0, 1m)(80) = n(20) for o(gg) = [ co do ] . (6)
Co n(go)do

Associated L-packets. The local Langlands conjecture is proven for GSp(4) over F in [GT], and in
the following proposition we tabulate the L-packets I7(g) associated to the L-parameters ¢ con-
structed above for all choices of 1, my and mg. To list these L-packets we proceed as follows. First,
the work [RS1] gives an explicit map, determined by the desiderata of the local Langlands conjecture
for GSp(4, F), from the set of non-supercuspidal, irreducible, admissible representations of GSp(4, F)
to the set of L-parameters; moreover, this map is the same as that in [GT]. Using this map, it is
straightforward to determine all the non-supercuspidal elements in the L-packets IT(p) for ¢ as
above. We remark that in some cases, to use [RS1], it is necessary to consider an L-parameter equiv-
alent to ¢. In [RS1] the non-supercuspidal representations are divided into eleven groups based on
inducing data. Note that in particular each group contains a generic representation, which is desig-
nated by the letter “a” if the group contains more than one type of irreducible representation. We also
use the notation of [ST] and [RS1] for the representations in Table 1.

Next, the L-packets I7(g) containing supercuspidal elements for ¢ as above can be described as
follows. Assume that w1 and m, are discrete series representations such that my 2 m,. Then the L-
packet IT(¢(m1,w2)) consists of two elements. These two representations of GSp(4, F) are theta lifts
of the form 6x (o) and Ox (o") where X and X’ are the four dimensional hyperbolic and anisotropic
quadratic spaces, respectively, and o and o’ are irreducible, admissible representations of GO(X, F)
and GO(X/, F), respectively, arising from the pair 771 and 7,. It is known that 8x (o) and 8y (o) have
central character wy, = wx,, 0x(0) is generic and tempered, and 6x/(o’) is non-generic. When both
71 and 7T are not supercuspidal, i.e., w1 = o« Stgrz) and mp = B Stgrp) for some characters o and 8
of F*, then Ox (o) =8([a~ 18, var—18], v=1/2q); this representation belongs to group Va. On the other
hand, 8y (o) is supercuspidal, and to supplement the partition from [RS1], we will say that it belongs
to group Vb*. If exactly one of 771 and m, is supercuspidal, say 71 = & Stgr2) with o a character of F*,
then 0x (o) =8 (/2= 1my, v=1/2); this representation is of type Xla. Again, 6x/(c') is supercuspidal,
and we say that it is of type XIb*. If both 77y and 7, are supercuspidal, then both 6x (o) and 6x/ (')
are supercuspidal, and we say that they are of type Xlla* and XIIb*, respectively. Finally, assume
that (E, o, ) is as above with 7p supercuspidal and not Galois invariant, i.e., 7§ % mo. Then the
L-packet IT(¢(E, mo, n)) consists of a single representation. This representation is a theta lift of the
form 0x,(09) where X is the four dimensional quadratic space having anisotropic component (E, NE)
and oy is the supercuspidal, irreducible, admissible representation of GO(Xg, F) associated to my and
1. The representation 60x,(oo) is generic, supercuspidal and has central character n; we say that this
representation is in group XIII*. Note that the superscript * indicates that representations of a given
type are supercuspidal.

Table 1 of the following proposition summarizes the data obtained by this method.

Proposition 4.1. Let ¢ = ¢ (11, 72) or ¢ (E, 7o, n) be as defined in the previous subsection. Then the L-packet
I1 (@) associated to ¢ by the local Langlands correspondence is given in Table 1.

Table 1 notation. If « is a non-Galois invariant character of E*, then 7 (o) is the associated supercus-
pidal representation of GL(2, F). If « is a Galois-invariant character of E*, then & denotes a character
of F* such that & o NE =« if mp is Galois-invariant, then 7o denotes an irreducible, admissible
representation of GL(2, F) such that the base change BC(7g) of 7p is 7g. The central character of a
representation 7 is denoted by w;.
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Table 1

L-packets.
condition I (p) group
o M =0 X0 M=o X
ofoy P #vE ahay ! # v ohoy ! x ooy e I
ojoy! £ v ahay !t =v ajay! x v 2165 1b
a;az’l #£vE aéaz’l =yp! aéal’l x v 201 16spe2) 1lIb
oyt =v, ey £ v ahay ! v as16sp) 1Ilb
ooyt =v, ey =v v X v 2a;16sp2) IlIb
ooyt =v, ey = vt v X v 201 16sp2) 11Ib
ohayt =v71 ahay !t # v ofart v 2aq16sp) 1ib
djoy! =v! ahoy = v X v 21 16sp) 1b

1 . — _

Ot;olz =V 1, 0(%0(2 =V 1 VX v1/20t11(;5p(2) 1Ib
e T =01 X0 ﬂzZ(XTGL(z)
aoy ' # V32 acy o) X a2 IIb
OlCl;1 = Vi3/2 Ol](;sp(4) Ivd
e T =01 XUy T2 =aStGL<2)
aoy ' # V32 ey ! Sty Xaa Ila
(XO[Z_] =p3/2 L(U3/2 StG]_(z), U_3/2(2() IVc
e T =0 X0y 7 supercuspidal
none az’lnz X oy X
o m=ualge 7T2=PHlowe)
a#p Lva™ 18,0718 x v=12q) vd
a=p L, 1px x v~ 2q) vid
o m=ualge 72=pPStL2)
a#B L 2a™1BSteL2), v 2a) Vb
a=p L(v1/2 SteL2), v 12q) Vic
e m =algye 2 supercuspidal
none LW 2 1y, v 12a) Xlb
e 7w =0uStee) T2 =PBSteLR)
a#p S([a~1B, va~18], v~1/2a), supercuspidal Va, Vb*
a=4 (S, v 2), T(T, v "2) Vla, VIb
e 1 =wStgye) 72 supercuspidal
none S(W'V2a~ 1y, v=1/2q), supercuspidal Xla, XIb*

e 111 supercuspidal 7 supercuspidal
m E two element supercuspidal L-packet

T =T (S, ), ©(T, 1)

o mo=0aq xay. Ifaf #aq, then & #1 is a character with £2=1and £m (1) ~ (o)

gvl,

of #ay, op/Fn " opx # [1 g/ o |px X T (o)

of #o1, 0p/Fn laglpx =£v LEv, (1))
of F#ar, wp/En T aglpe =Ev7! LEv, 7w (a2))
of #o1, 0p/Fn e lp =1 (S, 7 (@2)), T(T, 7 (at2))

_ 5 E_ 142 A1
af =ai, @1 oNp = WE/FN T QT X wg/F X Nay

Xlla*, XIIb*
Vllla, VIIIb

\i

IXb

IXb

Vlila, VIIIb
I
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Table 1 (continued)

condition I (p) group

e TIpo =Cllc]_(2]

a® #a Lvwg/rn Talpx, v 27 (@) IXb

a’ =a,@oNE=a, @2 =1 L(vwg/F, wg/F X v7128) vd

o’ =a, @oNE=a, &% = nog/r wE/F X @lesp2) 11Ib

e 79 = StgL(2)

a’ £a Swr/rn alpx, v 2 () Xa

a’ =a,@oNE=q, @2 =1 8([wE/F, vorrl, v™28), Va, Vb*
supercuspidal

o’ =a, @ oNE=a, &% = nog/r WE/F X @ Stgsp(2) Illa

e 1 supercuspidal

7§ = 1o, BC(fo) = 7o, Wz, = NWE/F WE/F X o Vil

7§ ¥ mo one element supercuspidal L-packet XIIr*

7§ = o, BC(#o) = 7o, Wz, =1 two element supercuspidal L-packet Xlla*, XIIb*

Degree four invariants. We now specialize to the case in which 1, 7, and 7 are tempered repre-
sentations with trivial central character. In this case, the L-packet I7(¢) associated to ¢, as described
in the previous section, contains a unique generic representation 7z, which is also tempered and has
trivial central character. The following proposition tabulates the level N, the Atkin-Lehner eigen-
value €5, and the Hecke eigenvalues i, and A, of the paramodular newform in 7. We also fix two
additive characters, ¥ of F with conductor o and v of E with conductor og. For the purposes of
stating the next proposition we define certain Euler-type factors. Let N be a non-negative integer, let
& =+1, and A and i be complex numbers. We define the factor L(s, N, &, A, i) as follows. If N =0,
then we define:

L(s,0,8, 0, ) ' =1—q g + (@2 +1+q72)qg * —q > 2rqg > +q7%.
If N=1, then we define
Lis, e, 0, ) ' =1—q 20+ e)g " + (g 2n+1)g > +eq 2q.
If N > 2, then we define
L(s,N, e, b, ) ' =1=q"0g 5 + (¢ 2+ 1)g .

Proposition 4.2. Let the notation be as in Proposition 4.1. Assume additionally that 71, 5 and g are tem-
pered, and that n = 1. Then I1(¢) contains a unique generic element 7, which is tempered and has trivial
central character. Let N be the paramodular level of 1, let €5 be the Atkin-Lehner eigenvalue of the newform
in 7, and let Ay and wy be the Hecke eigenvalues of the newform in 7 for the Hecke operators To,1 and T1,o
from 6.1 of [RS1]. We have

a(my) +a(mr) in the split case,

Nz =a(p) = . . 7)
2d(E/F)+ f(E/F)a(mp) in the non-split case,

€(1/2, w1, ¥, dxy)e(1/2, 72, ¥, dxy)  in the split case,

=&e(1/2,¢. ¢, dxy) = i '
ex =€(1/2,¢, 9, dxy) {8(1/2’%7wE’deE)wE/F(_l) in the non-split case,

and
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L(s,mq1)L(s,m2) in the split case,
L(S,Nz, &z, Ax, Uz) =L(s, @) = . . (9)
L(s, o) in the non-split case.

Moreover, Ny, €, A and [ are given by Table 2. Note that in the table, the subscript @ indicates evaluation
of the character at the uniformizer @ of F.

Proof. Let ¢ = @(m1,m2) or @(E, o, n) with 1, 7 and mo tempered, wy, = wy, =1, and n=1.
Then using Proposition 4.1, [RS1] and the discussion preceding Proposition 4.1, one can verify that
all the elements of I7(p) are tempered with trivial central character, and that exactly one element
7t is generic. Next, the second equalities in (7) and (9) follow from (a’'1), (a’2), (L1) and (L2) in
[Rohr], along with the local Langlands correspondence for GL(2) (see, for example, [Ku]). Similarly,
the second equality in (8) follows from (€’1) of [Rohr] in the split case. Finally, assume that we are
in the non-split case and let ¢ = v oTrﬁ. Then we have

s(Ind)F 15,9, dxy)?
£(p. ¥ dxy) = &(@o. V. dx ;) :

e(1g, ¥, dx;)?

~ e(1f, ¥, dxy)2e(wE/F, ¥, dxy)?

— e(po. ¥ dxg) (1f, ¥, dxy) i E/le/f v)
e(1g, ¥, dxy)

e(wE/F, ¥, dxy)?

e(1g, YE, dxg)?

= &(@o, Vi, dxy,)e(@g/F, ¥, dxy)?

([Rohr], (¢"2))

=¢&(po, YE, dxy;) ([Rohr], 11 Prop.)

= &(¢o, ¥, Ay )we/r(—1)g"  ([Rohr], 12 Lemma).

Thus, at the center of the critical strip, we have again by [Rohr], 11 Prop., (iii)

e(1/2,0, ¥, dxy) = &(@, ¥, dx, g~ 24/ alwoD/2

a(go)/2

=&(@o, Y, dxy)qp wg/r(=1)

=¢&(1/2, po, Vi, dxy )wg F(=1),

as desired.

In the case that m is non-supercuspidal the first equality in (7), (8) and (9) is known by [RS1]
Theorems 7.5.3, 7.5.9 and Corollary 7.5.5.

Now consider the case that 7 is a supercuspidal representation. In this case all of the factors
in (9) are 1. Let &(s,7) be the epsilon factor defined by the Novodvorsky zeta integrals of 7 as
discussed in Section 5. By Corollary 7.5.5 of [RS1] we have that &(s, w) = £, N*6~1/2)_ Further, as
7 is supercuspidal, the epsilon factor and gamma factor defined by the Novodvorsky zeta integrals
coincide. By Propositions 5.3 and 5.6 we then have that

ganNﬂ(sq/z): Y, T, Y)Y (s, 7Tz,~1ﬁ) split,
wg/F(=1)y(s,mo, )  non-split.

Finally, the proof is completed by noting that we have

y(s, i, ) = €(1/2, i, ¥, dxy )g D2 i = 1,2 split,

v (5,70, ) = £(1/2, 0, Y&, dxy )g~ I EDFATIE2) pon-split. O
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Table 2
Hecke eigenvalues.
condition Ny Ex A s
e m=axa ! m=oxa" T=aa xaa ! xa! I
o, unr 0 1 PPy +az! +aly o™ (1 —q 2+
(@ + oy )@y +ap, 7))
o unr 2a(a’) a'(=1) CP (o +azh) 0
o’ ram
« ram 2a(x) al=1) PRy o™ 0
o’ unr
a,a’ ram 2(a(a) +a(a’)) a(=a'(=1) 0 —q?
o T =0X a! Ty =a StoLe) T =aa’ SteL2) o~ ! Ila
o, o unr 1 —a, PPy +azl) +(q+ Ve, CPapaly +azlal 1)
o unr 2a(a’) a'(=1) PP (@ +ag) 0
o’ ram
o ram 2a(a) + 1 —a~ (=)ol qatl, —q?
o' unr
o, ram 2(a(a) +a(@’)) a(—Da'(—-1) 0 —q?
o mi=axa ! msupercuspidal 7 =amy X a! X
o unr a(2) &(3.72) ¢ (e +az!) 0
« ram a(m2) + 2a() a(-De(d, m2) 0 —q2
o m=aStee T=BStap «#B w=8(a"'Bva"lpl v ) Va
o, f unr 2 -1 0 —¢*—q
o unr 2a(B) +1 —Am p(—1) Az q —q
B ram
o ram 2a(x) +1 —a(=1)Bw —Qwq —q
B unr
a, f ram 2a(a) + 2a(B) a(=1)B(=1) 0 —q
o T =0{S'EG]_(2) b9 =ﬁStG|_<2) a=p m=1(S, v’”za) Via
o unr 2 1 2q0 —q(@—1)
« ram 4a(a) 1 0 —q
e m=aStee o supercuspidal 7 =820y, v 2a) Xla
o unr a(m) + 1 —ame(d,m2) qQlor —q
o ram a(m) + 2a(a) a(-De(, m2) 0 —q
e 1, mp supercuspidal m =m, mw=1(S, M) Villa
none 2a(rmy) 1 0 —q
e 1, W supercuspidal 7wy 2w, m supercuspidal Xlla*
none a(my) 4 a(ma) e(3 me}, m) 0 —q
o m=axa !l a’#a alpx ZOpF T =0EF a\;l REACED) VII
none 2d +2fa(o) wg/F(=Da(=1) 0 —q
e Mp=axa ' a%#a alpx=wgr T=T(S,T(@) Villa

none 2d+2fa(w) 1 0 —q

e o=« x ol

o unr 0
a)g/p unr

o =« a:doNf— n=wE/Fd2 X WE/F XA~

1

1 0 - (@ +ag))
-2 -1

(continued on next page)
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Table 2 (continued)

condition Ny & Ar W

o unr 2d wg/p(=1) C(w +a5H 0

WE/F ram

o ram 2d + 2 fa(@) wg/r(=1) 0 —q?

o my=0aStae o #Fa T =8vwgFalp, v 2T (@) IXa
none 2d + 2 fa(a) wg/F(—Da(=1) 0 —q?

. 7[0=0£Stc]_(2) a’ =« (X:(SZONE a?=1 T[=5([wE/F,U(/)E/F],U_1/2&) Va
« unr 2 -1 0 —q*>—q
WE/F unr

o unr 2d +1 —Ugp WE/F(=1) U q —q?
WE/F ram

« ram 2d +2fa(a) wg/r(—1) 0 —q?

o 7= StgL(2) o =« O(:(SZONE 6{2:(4)5/[: T = WE/F X&Stcsp(z) Illa
o unr 2 1 9@ +az") —¢*+q
« ram 2d + 2 fa(a) =4a(@) 1 0 —q?

e 1o supercuspidal 7§ 2wy 7 supercuspidal Xir*
none 2d + fa(mo) e(. mo)we/r(=1) 0 —q?

e 7 supercuspidal 7§ =mo BC(7g) =m0 wz, =1 7 supercuspidal Xlla*
none 2d + fa(mg) e(%. mo)we/r(—1) 0 —q?

o o supercuspidal 7§ =mo BC(Fo) =70 ws, =wE/F 7T =wE/F X Ao Vil
none 2d + fa(mo) = 2a(7to) wg/r(=1) 0 —q?

5. Equality of gamma factors for supercuspidal representations

The main result of this section is the calculation of the Novodvorsky gamma factors of the super-
cuspidal representations of type Xlla* and XIII*.

Let m be a supercuspidal generic irreducible admissible representation of GSp(4, F) with trivial
central character, and let s € C. We say that 7w admits an s-Bessel model if 7 is isomorphic to a space
of functions B : GSp(4, F) — C that satisfy

1 yi y2
1
B Vg | =v2B@
1
and
t1
t _
B P, g =l e
ty

for y1,y2,y3 €F, t1,top € F*, and g € GSp(4, F). If m admits an s-Bessel model, then this model is
unique (see [RS1], Proposition 2.5.7), and we denote it by B(i).

Now, let w be a representation of type Xlla* so that there exist two nonisomorphic, supercus-
pidal, irreducible, admissible representations 71 and m, of GL(2, F) with trivial central characters
such that m = 0x(o0) where X is the four dimensional hyperbolic quadratic space over F, and o



J. Johnson-Leung, B. Roberts / Journal of Number Theory 132 (2012) 543-564 557

is a representation of GO(X) constructed from m; and m,. Concretely, let X = M3(F), and equip
*
X with the symmetric bilinear form defined by (x,y) = Tr(xy*)/2 where [“b] = [ d _b]. Let

cd —Cc a
R :={(g,h) € GSp(4, F) x GO(X): A(g) = A(h)}, and let w = wy be the Weil representation of R
on the Schwartz space S(X?) with respect to ¥ [R]. We have an exact sequence

1— F* — GL(2, F) x GL(2, F) i>GSO(X)—>1

where 0(g1, g2)X = g1xg;. Let W (sr;, ¥) be the y-Whittaker model for 7;, so that W; € W (rr;, )
transforms according to the formula

Wi ([1 ’{]g) =Y OWilg)

for ge GL(2,F) and x € F. Let x; = [8 é] and x; = [_02 8] and let H be the stabilizer of x; and x; in

SO(X). For W; € W (rr;, ¥) and ¢ € S(X?) we define
B(g, @, W1, Wa,s) := / (w(g, hh")@)(x1,x2) Z (s, w1 (h1h})W1) Z(s, 2 (h2hy) W2) dh
H\SO(X)

where h = p(h1, hy), b’ is any element of GSO(X) such that A(h") = A(g) and

Z(s, W,-):fw,-([a 1D|a|5*1/zdxa, Wi e W (i, ).

FX

Note that as s; is supercuspidal, Z(s, W;) converges for all s € C to a polynomial in C[g~%, ¢°].
A similar statement is true for B(g,¢@, W1, W3,s). One can prove that each of the functions
B(-, ¢, W1, W3,s) is contained in the s-Bessel model for = and by extending linearly, we obtain a
surjective map

Bs: S(X?) @ W(my, ¥) ® W (2, ) — Bs(7r)
with the property that for g € GSp(4, F) and h = p(h1, hz) € GSO(X) with A(h) = A(g) we have
Bs(w(g. o @ m1(h)W1 @ ma(h))W2) = g - Bs(p @ W1 ® W2). (10)
On the other hand, for each s € C, there is another surjective map

Be:S(X*) @ W (1, ) ® W (12, ) — Bs(70)

with the analogous transformation property. This map is constructed using the Weil representation
and zeta integrals. Let ¢1,c2 € F* and let W (i, ¥, ¢,) be the v, c,-Whittaker model for 7. If W €
W (7, V¢, .c,), then

w Vgl =vex+aywie (11)
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for x, y € F and g € GSp(4, F). The map B; is defined to be the composition of GSp(4, F) maps

S(X2) @ W ¥) @ W ) 3 S(X2) @ W (1, y /%) @ W (ma, y~'12)

WG Y1212 - W 1) -5 Bo(m).  (12)

For the first map, we have
1/2 —1/2
S12(W1 @ W3)(g1, &2) = Wy ([ / 1]g1) ® Wy <[ / 1]g2>.

For the second map, let y; = [ ]} and y, = [] 1] and let H' be the stabilizer of y; and y; in SO(X).
Then the map C is given by

Clo@W1 ® Wa)(g) = / (wy (g, hh) @) (y1, y2) W1 (h1h}) W (hahl) dh,
H\SO(X)

where h = p(hy, hy) and h’ is any element of GSO(X) such that A(h") = A(g). The map S, is defined
by the formula

2

1/2

To construct the final map, we recall that for W € W (7T, ¥1,1), the zeta integral of W is given by

a
Z(s, W)://W a ’ la*3/2 dxd*a.
Fx F X 1

Since 7t is supercuspidal, Z(s, W) converges for all s € C to a polynomial in C[g*, g°]. We define the
map Bz : W(m, ¥1,1) — Bs () by

1
Bz(W)(@):=Z]|sm
-1

Lemma 5.1. There exists a constant ¢ € C* such that
Bs () = c|2/° Bg(x)
forallx e S(X?) @ W (i1, ¥) @ W (ir2, ¥) and for all s € C.
Proof. It follows from Theorem 1.8 of [R] that for every s € C the space of maps

S(X*) ® W (1, %) ® W (12, ) — Bs ()
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satisfying the transformation property in (10) is one dimensional. Therefore, for every s € C there
exists a constant c(s) € C* such that gs = c(s)B;. To compute c(s), let Ny be a positive integer and
for i =1,2 let W; in the Whittaker model W (rr;, ) of m; correspond to the characteristic function
Xi4pM in the Kirillov model of mr; with respect to ¥, so that

W; ([x l]) = X14pM ), xeF*.

Choose N > Ny such that
wi(In,)Wi=W; fori=1,2,

where
M= P lecL@ o ad=1(p"). b.c=0 (p"2)
2 I d ) - U, ) ) .
There is a homeomorphism

H\ SO(X) —> SO(X) - (X1, X2).

Let p be the projection p : SO(X) — H\ SO(X). The set p(o(I'n, x I'N,) N SO(X)) is an open neighbor-
hood of H - 1. By applying the above homeomorphism to this set one obtains an open neighborhood
of (x1,x2). Choose N3 > N3 such that this open neighborhood of (x1, x) contains

SO(X)(x1,%2) N (X1 + @ M2, 0), X2 + @ M(2, 0)).

Let ¢ = @1 ® @ € S(X?) be the characteristic function of (x; + wM3M(2, 0)) x (X2 + @3M(2, 0)),
where ¢; is the characteristic function of x; + @ N3M(2, 0). It follows that Bs(¢ ® W1 ® W>)(1) is a
non-zero constant C; independent of s. A lengthy computation shows that B;(¢p @ W1 ® W3)(1) =
C3|2|~%, where C; is a constant independent of s. Thus, c(s) = C1C2_1 215. O

Lemma 5.2. For any x € S(X%) ® W (11, ¥) ® W (7r2, %) and for any g € GSp(4, F), there is a functional
equation

1

Br-s®) 1&g = R Ey s m)y . m)bs ().
1

where y (s, ;) is the gamma factor for the GL(2, F) representation ;.

Proof. By (10), we may assume that g=1 and x=¢ ® W ® W. Note that

(P N R R ) [P
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Then,

1
B1—s(x) 1
1

= / o(1, p(h1,h2))@(x2, 1) Z(1 — 5, w1 (h1)W1) Z(1 — 5, w2 (ha) W2 ) dh
H\SO(X)

1,277"
= / w(17/0(h1,h2))</>(x1,xz)z<1—S,7T1<[_2 })m(hﬂW])

H\SO(X)

-1
xZ(l—s,m([_l 1:| >7Tz(h2)W2>dh,

by applying the identity (13). For i =1, 2, the zeta integral of m; satisfies a functional equation

Z (l — 5, <[ _1 ! ]) W) =y (s, m)Z(s, W).

This functional equation, together with the fact that these representations have trivial central charac-
ter yields

-1
Z(l—s,m<[_2 1/2] )n1(h1)w1)=|4|1+”2y(s,m)Z(s,m(hnwl),

and

-1
Z(l—s,n'z([_] 1} )772(h2)W2):y(s,ﬂz)Z(s,nz(hz)Wz).

Substituting these identities we obtain the lemma. O

We recall that the Novodvorsky zeta integrals for 7 satisfy a functional equation. In general if 7/ is
a generic irreducible admissible representation of GSp(4, F) with trivial central character, then there
exists an element y (s, 7") € C(q—°) such that

1
-1

!
Z|1—s,m 1

W l=y(s.n)Zs W)
1

for all W € W s/, ¥1.1). See [RS1], Proposition 2.6.5. Moreover the zeta integrals also define a local
L-factor, L(s, "), and epsilon factor

L(s, ")

8(5,7‘[,) :y(s,ﬂ/)m.

If v/ is supercuspidal, then L(s, 7') =1 so that the epsilon and gamma factors coincide.
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Proposition 5.3. We have
y(s,m) =y (s, )y (s, m2).
Proof. The proposition is proved by applying the previous lemmas to the functional equation for
Novodvorsky zeta integrals. Let x € S(X?) @ W (71, ¥) @ W (712, ¥). Let W/ € W (i, ¥ 1) be the image

of x under the composition of the first three maps in (12). The functional equation implies that
g€GSp(4,F) and for all se C

B 1 1
Z|1-sm b4 g|w

1 -

=y, m)Z|s, 1 glw
-1

Moreover, Lemma 5.1 asserts that for all g € GSp(4, F) and for all s € C,

1
7|sn e w =, (14)
—1

Now the left-hand side of the functional equation can be rewritten as

1 1
-1 1 ,
Z|1=s,m 1 T 1 g|w
1 -1
1 1
e 1 1 ,
=Z|1—-s,m 1 b4 1 g|w
-1 1
1
“1yy5—1 1
=c 2P B1—s®®) 118
1

Substituting (14) for the right-hand side of the functional equation we obtain
1
_ _ 1 C1yn—
T2 Brs (o 1&g =rEme 278 @)

Applying Lemma 5.2, we get:

2P 121 By (s, )y (5, 12) Bs (%) (8) = Y (5, ) 2| T Bs (%) (),
Y (8, TV (5, 2) Bs (X)(8) = ¥ (5, ) Bs (1) (&),
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for all g € GSp(4, F) and for all s € C. As x and g run through all possible values, the holomorphic
functions in s, Bs(x)(g), run through all possible zeta integrals of 7t by (14) and hence all functions
of the form P(q*, q°) where P € C[X, Y] (see [RS1], Proposition 2.6.4; recall that L(s, w) = 1). Thus,
we obtain the statement of the proposition. O

Now, suppose that m is a representation of type XIII*. The shape of the argument is analo-
gous to the previous case, but there are important differences which we will highlight. In this
case, there exists a quadratic extension E = F(s/dg) such that w = 0x,(00), where Xo is the four
dimensional quadratic space having anisotropic component (E,NE) and op is the supercuspidal,
irreducible, admissible representation of GO(X() with trivial central character associated to a super-
cuspidal, irreducible, admissible representation 7ty of GL(2, E) with trivial central character which is
not Galois invariant. Concretely, we take Xy to be the subspace of M;(E) such that for all x € X,

ab
cd

Let R :={(g,h) € GSp(4, F) x GO(Xp): A(g) =A(h)}, and let w = wy be the Weil representation of R
on the Schwartz space S (X(z)) with respect to . We have an exact sequence

*
o (x) = x*, where [ ] = [_dc _ab] and equip Xp with a symmetric bilinear form (x, y) = Tr(xy*)/2.

1— EX — F* x GL(2, E) 2% GSO(Xo) — 1

where pp(t, g)x =t~ gxo (g)* and the inclusion of E* sends z to (Nf(z),z). Set ¥ = oTrg/F. Let
W (o, ¥) be the y-Whittaker model for mo such that Wy € W (7, ¥) transforms according to the
formula

Wo ([1 ﬂg) = J (0 Wo(g)

for ge GL(2,E) and x € E. Let x; = [g \/(;TO] and x; = [—2/0¢d—08] and let H be the stabilizer of x; and
Xy in SO(Xp). For g € GSp(4, F)*, Wg € W (1o, ¥) and Qe S(X%) we define

B(g, ¢, Wo,s) := / (w(g, hh")@)(x1,X2) Z(s, w0 (hohgy) Wo) dh
H\SO(X)
where h = py(t, hg), h’ is any element of GSO(X) such that A(h’) = A(g) and
a ~1/2 % -
Z(s, Wo) = / Wo ([ : D jafy 2d*a, Woe W (o, ).
EX

Note that as mg is supercuspidal, Z(s, Wp) converges for all s € C to a polynomial in qES and qj.
A similar statement is true for B(g, ¢, Wo,s). We extend B(-, ¢, Wy, s) to GSp(4, F) via the formula

B(g) = n(2)] " "*B(go)
for
Ag) !
g0 1 g
™!

for g € GSp(4, F). One can then prove that each of the functions B(-, ¢, Wy, s) is contained in the
s-Bessel model for mw and by extending linearly, we obtain a surjective map
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Bs: S(X?) ® W (rwo, ¥) — Bs(r)

with the property that for g € GSp(4, F) and h = pg(t, hg) € GSO(Xp) with A(h) = A(g) we have

Bs(w(g, h)e ® mo(ho)Wo) = g - Bs(¢ ® Wo). (15)

For each s € C, there is another surjective map

Bi: S(X*) ® W (0, ¥/) — Bs ()
with the analogous transformation property. This map is constructed using the Weil representation

and zeta integrals. Let ¢1, c2 € F* and let W (i, V¢, ¢,) be the v, ,-Whittaker model for 7 as in (11).
The map pg; is defined to be the composition of GSp(4, F) maps

_id®s B
S(X?) ® W (o, %) il S(X?) @ W (1o, §/1/2V)
WG Y1 /21/2) - W Y1) —5 By(m). (16)

For the first map, we have

S1/2vds(Wo)(g0) = Wo ([ 1/2/dy 1 }go) .

For the second map, let y; = [ ‘/‘E] and y, = [1 1} and let H' be the stabilize of y; and y, in
SO(X). Then the map C is given by

Clp®Wo)(g) = / (wy (g.hh')@)(y1. y2)Wo(hohy) dh,
H\SO(X)

where g € GSp(4, F)*, h = p(t, hg) and i’ is any element of GSO(X) such that A(h’) = A(g). We extend
the function C(¢p ® W) to all of GSp(4, F) by zero. The maps S, and Bz are as in the previous case.

Lemma 5.4. There exists a constant c € C* such that

Bs(x) = cl2/do|* B;(x)
forallx € S(X?) ® W (o, ¥) and for all s € C.
Proof. The proof is analogous to the proof of Lemma 5.1. O

Lemma 5.5. For any x € S(X2) ® W (1o, ¥) and for any g € GSp(4, F), there is a functional equation

1
s || || 8 | = opr DR/l (5,70, )85 (1)),

1

where y (s, 7o, V) is the gamma factor for 7o with respect to .
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Proof. The proof is analogous to the proof of Lemma 5.2. O

Proposition 5.6. We have

Y (s, ) = wg/r(— Dy (s, 70, ¥).

Proof. The proof is analogous to the proof of Proposition 5.3. O
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