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Abstract

The nonarchimedean local analogues of modular forms of half-integral weight with

level and character are certain vectors in irreducible, admissible, genuine represen-

tations of the metaplectic group over a nonarchimedean local field of characteristic

zero. Two natural level raising operators act on such vectors, leading to the con-

cepts of oldforms and newforms. We prove that the number of newforms for a given

representation and character is finite and equal to the number of square classes with

respect to which the representation admits a Whittaker model.
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Let F be a nonarchimedean local field of characteristic zero with Hilbert symbol
( · , · ) and ring of integers o, let p ⊂ o be the maximal ideal of o, let ̟ be a

generator for p, and fix a character ψ of F with conductor o. Let S̃L(2, F ) be the
two-fold cover of SL(2, F ), as defined below. For m and a in F× let γm(a) be the
Weil index of ax2 with respect to ψm, and define δm(a) = (−1, a)γm(a)γm(1)−1.

Let (τ, V ) be an irreducible, admissible, genuine representation of S̃L(2, F ). The

center of S̃L(2, F ) consists of the four elements

([
ε

ε

]
, ε′
)

where ε, ε′ = ±1. Consider the operator

τ

([
−1

−1

]
, 1

)
.

By Schur’s Lemma, this operator acts by a scalar, and the square of this scalar
is the Hilbert symbol (−1,−1). Also, δ1(−1)2 = (−1,−1). It follows that there
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exists ε(τ, ψ) = ±1 such that

τ

([
−1

−1

]
, 1

)
= ε(τ, ψ)δ1(−1).

We let Fψ(τ) be the set of a in F× such that τ admits a Whittaker model with
respect to ψa. The group F×2 acts on Fψ(τ). Let χ be a character of o×. For n
an integer, we let Vψ(τ, n, χ) be the subspace of vectors v in V such that

τ

([
1 b

1

]
, 1

)
v = v for all b in o, (1)

τ

([
a

a−1

]
, 1

)
v = δ1(a)χ(a)v for all a in o

×, (2)

τ

([
1
c 1

]
, 1

)
v = v for all c in p

n. (3)

We refer to the vectors in the spaces Vψ(τ, n, χ) as metaplectic vectors, and say
that the vectors in Vψ(τ, n, χ) have level pn. Any metaplectic vector of level
pn is a metaplectic vector of level pn+1. That is, the inclusion of Vψ(τ, n, χ) in
Vψ(τ, n + 1, χ) is a level raising operator. There is another natural level raising
operator that takes metaplectic vectors of level pn to metaplectic vectors of level
pn+2. Define

α2 : Vψ(τ, n, χ) −→ Vψ(τ, n+ 2, χ)

by

α2v = τ

([
̟−1

̟

]
, 1

)
v. (4)

We note that the definition of α2 does not depend on n. We define the subspace
Vψ(τ, n, χ)old of oldforms in Vψ(τ, n, χ) as the subspace spanned by the images
of vectors of lower level, i.e., as the subspace generated by Vψ(τ, n − 1, χ) and
α2Vψ(τ, n− 2, χ). We define

Vψ(τ, n, χ)new = Vψ(τ, n, χ)/Vψ(τ, n, χ)old.

In this paper we study the dimensions of the spaces Vψ(τ, n, χ)new and prove the
following theorem.

Main Theorem. Let (τ, V ) be an irreducible, admissible, genuine representation

of S̃L(2, F ), and let χ be a character of o×. If χ(−1) 6= ε(τ, ψ), then Vψ(τ, n, χ)
is zero for all n. Assume that χ(−1) = ε(τ, ψ). The sum

∑
n

dimVψ(τ, n, χ)new is

finite and ∑

n

dimVψ(τ, n, χ)new = #Fψ(τ)/F×2. (5)

This result has a GL(2) analogue. Let (π, V ) be a generic, irreducible, ad-
missible representation of GL(2, F ). For n a non-negative integer, let V (π, n) be
the subspace of vectors v in V that are stabilized by the subgroup of elements

[
a b
c d

]
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of GL(2, o) such that c ≡ 0 mod pn and d ≡ 1 mod pn. In this setting, the inclusion
of V (π, n) in V (π, n+1) is again a level raising operator, and there is another level
raising operator from V (π, n, χ) to V (π, n+ 1, χ) that sends v to

π(

[
1

̟

]
)v.

In this GL(2) case, the sum analogous to the sum in the main theorem has value
1, so that there is an essentially unique newform. This GL(2) result is directly
analogous to the result of the main theorem because π admits a Whittaker model
with respect to ψa for all a in F×.

The result presented here builds on the works of Waldspurger, but also intro-
duces some new ideas. As far as we know, the spaces Vψ(τ, n, χ) for F = Qp were
first considered in [W2]; some subsequent works that also used these spaces are
[BM] and [M]. For the case F = Qp it should be possible to deduce the main the-
orem from results in Waldspurger’s work. However, our approach is more abstract
than the approach in [W2]. To prove the main theorem we introduce the concept
of primitive vectors. Primitive vectors comprise the kernel of a certain projection
µ on the union Vψ(τ,∞, χ) of the spaces Vψ(τ, n, χ), and the dimension of the
subspace of primitive vectors is equal to the sum in the main theorem. Proving
the main theorem is thus reduced to computing the dimension of the space of
primitive vectors. This is achieved by using the Kirillov-type model for τ . This
method can be deployed in other settings. For example, an analogous argument
proves the above mentioned analogue for GL(2), as we explain at the end of this
paper.

Our interest in the spaces Vψ(τ, n, χ) stems from our project to understand
the subspaces W0(n) of vectors in irreducible, admissible representations (π,W ) of
GSp(4, F ) with trivial central character that are stabilized by the groups Γ0(p

n)
of elements [

A B
C D

]

of GSp(4, o) with C ≡ 0 mod pn (we use the notation from [RS] for GSp(4)). We
refer to the elements of W0(n) as Siegel vectors. If (π,W ) is a Saito-Kurokawa
representation of GSp(4, F ), then the quotient WZJ ,ψ−1 of W by the subspace
spanned by the vectors π(g)w − ψ(−x)w for w in W and g of the form

g =




1 x
1

1
1




for x in F is isomorphic to π−1
SW

⊗ τ , as a representation of the Jacobi group GJ

of GSp(4, F ), for some irreducible, admissible, genuine representation (τ, V ) of

S̃L(2, F ). Here, GJ consists of the elements of GSp(4, F ) of the form



1 ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

1


 ,
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and π−1
SW

is the Schrödinger-Weil representation of GJ (see [BS] for the definition
of π−1

SW
). Note that the subgroup of g as above is the center of GJ . It turns

out that there is a natural connection between Siegel vectors and metaplectic
vectors in τ . If the residual characteristic of F is even, then one must additionally
consider certain other subspaces Vψ,j(τ, n, 1) of V , where j varies between 0 and
val(2); the space Vψ(τ, n, 1) from above is Vψ,val(2)(τ, n, 1). In particular, in the
case of even residual characteristic the consideration of unramified Saito-Kurokawa
representations leads to the definition of the Kohnen plus space in Vψ(τ, 2val(2), 1).
We plan to return to these topics in subsequent publications.

Acknowledgements. We would like to thank the referee for some useful comments.

1 Background

In this section we gather some necessary basic definitions and results about the
underlying field, the metaplectic group S̃L(2, F ), and representations of S̃L(2, F ).
Throughout this paper, F is a nonarchimedean local field of characteristic zero
with ring of integers o, maximal ideal p in o, and Hilbert symbol ( · , · ). Let ̟ be
a generator of p, and let q be the order of o/p. We will use the absolute value | · |
on F such that |̟| = 1/q. Fix a character ψ of F with conductor o, i.e., ψ(o) = 1
but ψ(p−1) 6= 1. We will always use the Haar measure on F that assigns o volume
1. If n = 0 we take 1 + pn to be o×.

Number theory

Lemma 1.1. Assume that F has even residual characteristic.

(i) The map o/p → o/p sending x to x2 + x is a group homomorphism and is

2-to-1.
(ii) Let a be in o. The congruence a ≡ x2 + x mod p has a solution if and only

if the equation a = x2 + x has a solution in o.

(iii) The group (1 + 4o)/(1 + 2o)2 has two elements. By (i), there exist a in o

such that the congruence a ≡ x2 + x mod p has no solution, and for any

such a the element 1 + 4a is a representative for the non-trivial coset of

(1 + 4o)/(1 + 2o)2.
(iv) If a in o is such that a ≡ x2+x mod p has no solution, then (̟, 1+4a) = −1.
(v) The Hilbert symbol satisfies (o×, 1 + 4o) = 1.

Proof. (i) It is easy to check that the map is a group homomorphism. Also, it is
easy to see that x and x+ 1 have the same image. Assume that x2 + x = y2 + y.
Then x2 − y2 + x − y = 0, i.e., (x − y)(x + y + 1) = 0. It follows that x = y or
x+ y + 1 = 0. The latter is equivalent to y = x+ 1.

(ii) Assume that a ≡ c2 + c mod p for some c in o. Let f(X) = X2 +X − a.
Then |f(c)| < |f ′(c)|2. By Hensel’s Lemma, there exists y in o such that f(y) = 0.

(iii) Let a be any element of o such that a ≡ x2 + x mod p has no solution;
by (i), such an a exists. We need to prove that 1 and 1 + 4a represent all the
distinct cosets in (1 + 4o)/(1 + 2o)2. It is easy to see that they represent distinct
cosets. Let b in o be such that 1 + 4b is not in (1 + 2o)2. Then the identity
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(1 + 2x)2 = 1 + 4(x2 + x) implies that the equation b = x2 + x has no solution
in o. By (ii), the congruence b ≡ x2 + x mod p has no solution. By (i), the
congruence b− a ≡ x2 + x mod p has a solution. By (ii), there exists x in o such
that b− a = x2 + x. Hence

1 + 4b = (1 + 4a)

(
1 + 4

x2 + x

1 + 4a

)
.

We have
x2 + x

1 + 4a
≡ x2 + x mod p.

Therefore, by (ii), there exists y in o such that

x2 + x

1 + 4a
= y2 + y.

Hence

1 + 4b = (1 + 4a)
(
1 + 4(y2 + y)

)
= (1 + 4a)(1 + 2y)2.

This proves (iii).
(iv) Let a in o be such that a ≡ x2 + x has no solution mod p; clearly, a is in

o×. Assume that (1+4a,̟) = 1; we will obtain a contradiction. By the definition
of the Hilbert symbol, there exist x and y in F such that

x2 − (1 + 4a)y2 = ̟.

Since the valuation on the right side is odd, x and y must have the same valuation.
Write x = ̟kx′ and y = ̟ky′ with k in Z and x′ and y′ in o×. Then

x′2 − (1 + 4a)y′2 = ̟1−2k.

Assume that 1− 2k < 2val(2). Then it follows from (x′ − y′)(x′ + y′) = u̟1−2k +
4ay′2 that val(x′−y′)+val(x′+y′) = 1−2k. Now x′+y′ = x′−y′+2y′. Therefore, if
val(x′−y′) ≥ val(2), then val(x′ +y′) ≥ val(2), and consequently 1−2k ≥ 2val(2),
a contradiction. Hence, val(x′ − y′) < val(2). But then val(x′ + y′) = val(x′ − y′),
so that val(x′ − y′) + val(x′ + y′) is an even number; this is also a contradiction.
Thus, 1−2k ≥ 2val(2), and then in fact 1−2k > 2val(2). Again, (x′−y′)(x′+y′) =
u̟1−2k + 4ay′2; this now implies that val(x′ − y′) + val(x′ + y′) = 2val(2). Using
again x′ + y′ = x′ − y′ + 2y′, we see that necessarily val(x′ + y′) ≥ val(2) and
val(x′ − y′) ≥ val(2), and indeed val(x′ + y′) = val(x′ − y′) = val(2). Write
x′ − y′ = 2w with w ∈ o×. Then 2w(2w + 2y′) = ̟1−2k + 4ay′2, which implies
w(w+ y′) ≡ ay′2 mod p. Hence a ≡ (wy′ )

2 + w
y′ mod p, contradicting the choice of

a.
(v) Let v be in o×. Let a in o be such that a ≡ x2 +x mod p has no solution.

Such an a exists by (i). By (iii), to prove that (v, 1 + 4o) = 1 it suffices to prove
that (v, 1 + 4a) = 1. Now by iv) we have (̟, 1 + 4a) = (v̟, 1 + 4a) = −1.
Therefore, (v, 1 + 4a) = (v̟2, 1 + 4a) = (−1)(−1) = 1.
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Lemma 1.2. The following statements hold about the Hilbert symbol of F .

(i) Every element of 1 + 4̟o is a square, so that (F×, 1 + 4̟o) = 1.
(ii) (o×, (1 + 4o) ∩ o×) = 1.
(iii) (̟, (1 + 4o) ∩ o×) 6= 1.

Proof. (i) Let a be in o and define f(X) = X2−(1+4̟a). Then |f(1)| = |4̟a| <
|2|2 = |f ′(1)|2. By Hensel’s Lemma, the equation f(X) = 0 has a solution in o.

(ii) If the residual characteristic of F is odd, then the assertion is (o×, o×) = 1,
which is well-known. If the residual characteristic of F is even, this is v) of Lemma
1.1.

(iii) If the residual characteristic of F is odd, then the assertion is (̟, o×) 6= 1,
which is well-known. If the residual characteristic of F is even, then this follows
from (iv) of Lemma 1.1.

The cocycle

In this paper we define S̃L(2, F ) using the same cocycle c as is commonly used in
[G], [W1], [W2] and [W3] (though c is denoted by β in these works). The cocycle
c is a Borel measurable function

c : SL(2, F ) × SL(2, F ) → {±1}

such that
c(g1g2, g3)c(g1, g2) = c(g1, g2g3)c(g2, g3) (6)

for g1, g2 and g3 in SL(2, F ), and c(g, 1) = c(1, g) = 1 for g in SL(2, F ). As a set

S̃L(2, F ) = SL(2, F ) × {±1}, and the group law for S̃L(2, F ) is

(g, ε)(g′, ε′) = (gg′, εε′c(g, g′))

for g and g′ in SL(2, F ) and ε and ε′ equal to ±1. Explicitly, c is given by the
formula

c(g, g′) = (x(g), x(g′))(−x(g)x(g′), x(gg′))s(g)s(g′)s(gg′),

where

x

([
a b
c d

])
=

{
c if c 6= 0,
d if c = 0

and

s

([
a b
c d

])
=

{
(c, d) if cd 6= 0 and val(c) is odd,

1 otherwise.

It is known that c(K4,K4) = 1, where

K4 =

{[
a b
c d

]
∈ SL(2, o) : a ≡ 1 (4o), c ≡ 0 (4o)

}
.

Thus, if the residual characteristic of F is odd, then K4 = SL(2, o). The subset

K4 ×{1} is a subgroup of S̃L(2, F ). Calculations show that the center of S̃L(2, F )
consists of the elements ([

ε
ε

]
, ε′
)
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for ε and ε′ equal to ±1. For n is a positive integer such that n ≥ 2v(2), let Γn be

the subgroup of S̃L(2, F ) consisting of all the elements

([
a b
c d

]
, 1

)

with a, b, c and d in o, a ≡ d ≡ 1 (pn), and b ≡ c ≡ 0 (pn). The topology for

S̃L(2, F ) is the topology obtained by taking the subgroups Γn for n ≥ 2v(2) as a
fundamental system of open neighborhoods of the identity. With this topology,
S̃L(2, F ) is an l-group as defined in [BZ].

The factor δ
m

(a)

For m in F× define the character ψm : F → C× by ψm(x) = ψ(mx), where ψ is
our fixed character of F . If m and a are in F× then we let γm(a) denote the Weil

index of the quadratic form ax2 on F with respect to ψm, as defined in paragraph
24, page 172 of [Weil]. By paragraph 27, page 175 of [Weil], one has

γm(a) =

lim
n→∞

∫
p−n

ψm(ax2) dx

| lim
n→∞

∫
p−n

ψm(ax2) dx|
. (7)

From this formula it follows that γm(a) = γma(1) = γ1(ma), γmb2(a) = γm(a) and
γm(ab2) = γm(a) for a, b and m in F×. We define

δm(a) = (a,−1)γm(a)γm(1)−1.

The number δm(a) is written as χψm(a) in [W3], page 223 and in [W1], page 4,
and is denoted by (a,−1)γF (a, ψm) in [Rao], page 367. It is proven in paragraph
28, page 176 of [Weil] (this is the formula on the bottom of this page if one uses
Proposition 3 of [Weil], page 172) that

δm(ab) = (a, b)δm(a)δm(b) (8)

for a, b and m in F×. From this, and other properties of the Weil index, one can
prove that the following hold for a, c and m in F×:

δm(c2a) = δm(a),

δmc(a) = (a, c)δm(a),

δm(−1) = (−1,−1)γm(1)−2,

δm(a)−1 = (a,−1)δm(a) = δ−m(a),

δm(a)4 = 1,

γm(1)8 = 1.

Lemma 1.3. We have δ1((1 + 4o) ∩ o×) = 1.
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Proof. We will first prove that

γ1(a) =

∑
z∈o/pval(2a)

ψ(az2̟−2val(2a))

|
∑

z∈o/pval(2a)

ψ(az2̟−2val(2a))|
(9)

for all non-zero a in o. Fix a non-zero element a of o. Let n be a positive integer.
Using that ψ has conductor o we have

∫

p−n

ψ(ax2) dx =
∑

z∈p−n/o

∫

o

ψ(a(x+ z)2) dx

=
∑

z∈o/pn

∫

o

ψ(a(x+ z̟−n)2) dx

=
∑

z∈o/pn

∫

o

ψ(a(2xz̟−n + z2̟−2n)) dx

=
∑

z∈o/pn

ψ(az2̟−2n)

∫

o

ψ(2axz̟−n) dx

=
∑

z∈o/pn,

val(2az̟−n)≥0

ψ(az2̟−2n)

=
∑

z∈pn−val(2a)/pn

ψ(az2̟−2n)

=
∑

z∈o/pval(2a)

ψ(az2̟−2val(2a)).

The statement (9) now follows from (7). Now let a be in (1 + 4o) ∩ o×. The
formula (9) shows that γ1(a) = γ1(1). We now have δ1(a) = (a,−1)γ1(a)γ1(1)−1 =
(a,−1) = 1 by ii) of Lemma 1.2.

Representation theory

Let (τ, V ) be a representation of S̃L(2, F ). We say that τ is genuine if τ(1, ε)v = εv
for ε = ±1 and v in V . We say that τ is smooth if for every v in V there exists
a positive integer n ≥ 2v(2) such that τ(k)v = v for k in Γn, where Γn is as
defined above. We say that τ is admissible if τ is smooth and for any positive
integer n ≥ 2v(2) the subspace of v in V such that τ(k)v = v for k in Γn is
finite-dimensional.

The Kirillov-type model of Waldspurger

The proof of the main theorem will make essential use of a certain type of model
for irreducible, admissible, genuine representations τ of S̃L(2, F ). This model is
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analogous to the Kirillov model for infinite-dimensional, irreducible, admissible
representations of GL(2, F ). Waldspurger proved the existence of this model for
those τ such that τ ∼= θ(π, ψ), where π is an infinite-dimensional, unitary, irre-
ducible, admissible representation of GL(2, F ) with trivial central character and

θ(π, ψ) is the representation of S̃L(2, F ) defined in [W3], pages 228–231. For such
τ , the existence of the model is proved in [W1], and is discussed in Assertion 7,
page 396, of [W2] and on pages 228–229 of [W3]. At the suggestion of the referee,
we give a complete proof of the existence of the model for all τ because this is
missing from the literature. The assertion about the model is as follows.

Theorem 1.4. Let (τ, V ) be an irreducible, admissible, genuine representation of

S̃L(2, F ). Let χ be a character of F× such that χ(−1) = ε(τ, ψ). There exists a

space M(τ, χ) of functions f : F× → C and an action of S̃L(2, F ) on M(τ, χ)
such that, with this action, M(τ, χ) is isomorphic to τ . Moreover, M(τ, χ) and

the action have the following properties:

(i) The functions in M(τ, χ) are locally constant, have relatively compact sup-

port in F , and are supported in Fψ(τ). The space S(Fψ(τ)) of locally con-

stant, compactly supported functions on Fψ(τ) is contained in M(τ, χ).
(ii) For f in M(τ, χ), n in F and x in F× we have

τ

([
1 n

1

]
, 1

)
f(x) = ψ(nx)f(x).

(iii) For f in M(τ, χ), a in F× and x in F× we have

τ

([
a

a−1

]
, 1

)
f(x) = δ1(a)χ(a)f(a2x).

The proof that we will present in the remainder of this section is based on
the abstract proof for GL(n) in [BZ]; in particular, we will not use theta lifts.

We require some notation and definitions. Let B̃ be the subgroup of S̃L(2, F ) of
elements of the form ([

a b
a−1

]
, ε

)

for a in F×, b in F and ε = ±1, let U be the subgroup of B̃ consisting of the
elements ([

1 b
1

]
, 1

)

with b in F , and let Z̃ be the center of S̃L(2, F ). The subgroup Z̃ is contained
in B̃, and B̃ normalizes U . Let C∞

0 (F×) be the complex vector space of locally
constant complex valued functions on F× that have relatively compact support
in F , i.e., vanish outside of a compact subset of F . Let χ be a character of F×.
Define an action of B̃ on C∞

0 (F×) by

([
a b

a−1

]
, ε

)
f(x) = εδ1(a)χ(a)ψ(abx)f(a2x)
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for f in C∞
0 (F×), a and x in F×, b in F and ε = ±1. Computations show that

this defines a smooth, genuine representation of B̃ on C∞
0 (F×). Let (τ, V ) be

an irreducible, admissible, genuine representation of S̃L(2, F ), and assume that
χ(−1) = ε(τ, ψ). Using Whittaker functionals, we can define a B̃ map from V to
C∞
0 (F×) as follows. By Lemme 3, page 6, of [W1], τ is infinite-dimensional. As

in the introductory remarks, let Fψ(τ) be the set of a in F× such that τ admits
a Whittaker model with respect to ψa. By Lemme 2, page 226, of [W3] the set
Fψ(τ) is non-empty. The set Fψ(τ) consists of a disjoint union of F×2 cosets;
let Fψ(τ) = a1F

×2 ⊔ · · · ⊔ alF
×2. For each i in {1, . . . , l} let λi : V → C be a

non-zero ψai Whittaker functional; by Lemme 2, page 226, of [W3], λi is unique
up to multiplication by non-zero complex numbers. Let v be in V . We define
fv : F× → C by

fv(x) = δ1(a)
−1χ(a)−1λi(τ(

[
a

a−1

]
, 1)v) (10)

if x is in aiF
×2 for some i in {1, . . . , l} and x = aia

2 for some a in F×, and by
fv(x) = 0 if x is not contained in Fψ(τ). A computation using that χ(−1) = ε(τ, ψ)
shows that the right-hand side of (10) is the same if a is replaced by −a, so that
fv(x) is well-defined for x in aiF

×2 and i in {1, . . . , l}. For v in V , the function
fv is locally constant.

Lemma 1.5. Let (τ, V ) be an irreducible, admissible, genuine representation of

S̃L(2, F ), let χ be a character of F× such that χ(−1) = ε(τ, ψ), and let the notation

be as above. If v is in V , then fv is in C∞
0 (F×). The map

T : V → C∞
0 (F×)

defined by T (v) = fv is a B̃ map.

Proof. Let v be in V . Since τ is a smooth representation, there exists a positive
integer n such that

τ

([
1 pn

1

]
, 1

)
v = v.

Let i be in {1, . . . , l}, let a be in F×, and set x = aia
2. If b is in pn, we have

fv(x) = ψ(xb)fv(x). It follows that if x is not in p−n, then fv(x) = 0. Hence, fv
has relatively compact support in F . A computation shows that T is a B̃ map.

We will use the map T to prove Theorem 1.4. We will show that T is injective
and has certain other properties; then we will define M(τ, χ) to be the image of
T and prove that it satisfies the claims of the theorem. To do this we need two
lemmas. Let (τ, V ) be a smooth, genuine representation of U . If a is in F , then
we let V (U,ψa) be the subspace of V spanned by all the vectors of the form

ψa(x)v − τ

([
1 x

1

]
, 1

)
v

for v in V and x in F . We will also write V (U) = V (U,ψ0), VU,ψa = V/V (U,ψa),
and VU = VU,ψ0 for a in F .
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Lemma 1.6. Let (τ, V ) be a smooth representation of U .

(i) If v is in V and v is in V (U,ψa) for all a in F , then v = 0.
(ii) If v is in V and A is a compact, open subset of F , then there exists a w in

V such that v −w is in V (U,ψa) for a in A and w is in V (U,ψa) for a not

in A.

Proof. We will use the Fourier transform S(F ) → S(F ) that sends f to f̂ , with f̂
defined by

f̂(x) =

∫

F

f(y)ψ(−xy) dy

for x in F . Here, as is our convention, we use the Haar measure that assigns o

measure 1. As usual, for f in S(F ) and v in V , we define

τ(f)v =

∫

F

f(x)τ

([
1 x

1

]
, 1

)
v dx.

We have τ(f1 ∗ f2) = τ(f1)τ(f2) for f1 and f2 in S(F ), where the convolution
f1 ∗ f2 is defined by

(f1 ∗ f2)(x) =

∫

F

f1(y)f2(x− y) dy.

If f1 and f2 are in S(F ), then f̂1 ∗ f2 = f̂1f̂2, where f̂1f̂2 is the pointwise product of

f̂1 and f̂2. We define τ ′(f) = τ(f̂ ) for f in S(F ). We have τ ′(f1)τ
′(f2) = τ ′(f1f2)

for f1 and f2 in S(F ). Also, for t an integer and a in F we define ft,a to be the
element of S(F ) defined by ft,a(x) = charpt(x − a). For t an integer and a in F

we have f̂t,a(x) = q−tcharp−t(x)ψ(−ax) and the equalities

q−t
∫

p−t

ψ(−ax)τ

([
1 x

1

]
, 1

)
v dx = τ(f̂t,a)v = τ ′(ft,a)v. (11)

Let v be in V and let a be in F . We claim that v is in V (U,ψa) if and only if
there exists f in S(F ) such that f(a) 6= 0 and τ ′(f)v = 0. Assume that v is in
V (U,ψa). By 2.33 of [BZ], there exists a positive integer t such that the integral
in (11) is zero, so that τ ′(ft,a)v = 0. Since ft,a(a) 6= 0, this proves the claim
in one direction. Assume that f in S(F ) is such that f(a) 6= 0 and τ ′(f)v = 0.
Since τ ′(f1)τ

′(f) = τ ′(f1f) for f1 in S(F ), we may assume that f = ft,a for some
positive integer t. By (11), the integral in (11) is zero, so that by 2.33 of [BZ] the
vector v is in V (U,ψa).

(i) Assume that v is in V (U,ψa) for all a. Since τ is a smooth representation,
there exists h in S(F ) such that τ ′(h)v = v. By the proof of the claim from the
previous paragraph, for every a in the support of h there exists a positive integer
ta such that τ ′(fta,a)v = 0 and a + pta is in the support of h. Since the support
of h is compact, and since for any a and a′ in F and positive integers t and t′
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either a + pt and a′ + pt
′

are disjoint or one coset is contained in the other, it
follows that we can write the characteristic function of the support of h as a linear
combination of the functions fa,ta for an appropriate finite subset X of elements
a in the support of h. Therefore, h =

∑
a∈X hfta,a. Hence,

v = τ ′(h)v =
∑

a∈X

τ ′(h)τ ′(fta,a)v = 0.

(ii) Let v be in V and let A be a compact, open subset of F . Set w =
τ ′(charA)v. Let a be in A. We have charA(a) 6= 0, and τ ′(charA)(v − w) =
τ ′(charA)v − τ ′(char2A)v = 0, so that v − w is contained in V (U,ψa). Let a be in
F but not in A. Let f in S(F ) be such that f(a) 6= 0 and fcharA = 0. Then
τ ′(f)w = τ ′(fcharA)v = 0, so that w is in V (U,ψa).

Let (τ, V ) be an irreducible, admissible, genuine representation of S̃L(2, F ).
Evidently, the groups U and Z̃ act naturally on V (U,ψa) and VU,ψa for a in F ,
and we have the formula

z(v + V (U,ψa)) = ωτ (z)v + V (U,ψa),
([

1 b
1

]
, 1

)
(v + V (U,ψa)) = ψa(b)v + V (U,ψa)

for a and b in F and v in V . Here, ωτ is the central character of τ . If a = 0, then
the entire group B̃ acts on V (U) and VU . In the proof of the next lemma we will
use the following rule: for any vector u in V , b in F , and a in F×, we have

u ∈ V (U,ψb) ⇐⇒ τ

([
a

a−1

]
, 1

)
u ∈ V (U,ψba

−2

). (12)

Lemma 1.7. Let (τ, V ) be an irreducible, admissible, genuine representation of

S̃L(2, F ), let χ be a character of F× such that χ(−1) = ε(τ, ψ), and let the notation

be as in the paragraph preceding Lemma 1.5. For v in V and i in {1, . . . , l}, define

hv,i : B̃ → VU,ψai by

hv,i

([
a b

a−1

]
, ε

)
= εψai(ab)τ

([
a

a−1

]
, 1

)
v + V (U,ψai).

(i) For v in V (U) = V (U,ψ0) and i in {1, . . . , l} the function hv,i is contained

in c-IndB̃
Z̃U
VU,ψai , and the map sending v in V (U) to ⊕li=1hv,i defines an

isomorphism of B̃ representations

V (U)
∼
−→ ⊕li=1c-IndB̃

Z̃U
VU,ψai . (13)

(ii) The restriction of the function T from Lemma 1.5 to V (U) is injective, and

for i in {1, . . . , l} the image of c-IndB̃
Z̃U
VU,ψai , regarded as a subspace of

V (U) via (13), is S(aiF
×2).
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Proof. (i) Let v be in V (U) and let i be in {1, . . . , l}; the first task is to prove that

hv,i is contained c-IndB̃
Z̃U
VU,ψai . First, it is straightforward to verify that

hv,i

(
z

([
1 b

1

]
, 1

)
p

)
= ωτ (z)ψ

ai(b)hv,i(p)

for z in the center Z̃ of S̃L(2, F ), b in F , and p in B̃. Second, we claim that

hv,i

([
a

a−1

]
, 1

)
= 0 (14)

for sufficiently small and sufficiently large elements a of F×. We may assume that

v = w − τ

([
1 b

1

]
, 1

)
w

for some b in F . Let M be a positive integer such that ψai(a2b) = 1 for a in pM

and

τ

([
1 pM

1

]
, 1

)
v = v.

Let a be in F×. If a is in pM , then

hv,i

([
a

a−1

]
, 1

)
= (1 − ψai(a2b))τ

([
a

a−1

]
, 1

)
w + V (U,ψai) = 0.

On the other hand, assume that a2 is not in a−1
i p−M so that there exists y in pM

such that ψai(a2y) 6= 1. We have

hv,i

([
a

a−1

]
, 1

)
= τ

([
a

a−1

]
, 1

)
τ

([
1 y

1

]
, 1

)
v + V (U,ψai)

= ψai(a2y)hv,i

([
a

a−1

]
, 1

)
;

since ψai(a2y) 6= 1, this vector is zero. This proves our claim. Finally, a compu-
tation shows that for a and a′ in F×, b and b′ in F , and ε = ±1,

hv,i

(
p

([
a′ b′

a′−1

]
, 1

))
= ψai(a2a′b′)hw,i(p)

where

p =

([
a b

a−1

]
, ε

)
and w = τ

([
a′

a′−1

]
, 1

)
v.

This formula, along with the the smoothness of v and the fact that (14) holds
for sufficiently large elements a of F×, implies that hv,i is right invariant under a

compact, open subgroup of B̃.
Next, a computation proves that the map in (i) is B̃ equivariant. To see that

it is injective, assume that v is in V (U) and hi,v = 0 for all i in {1, . . . , l}. Then

τ

([
a

a−1

]
, 1

)
v ∈ V (U,ψai)



518 Brooks Roberts and Ralf Schmidt

for all i in {1, . . . , l} and a in F×. Using the rule (12), and recalling that v is
contained in V (U) and that V = V (U,ψa) for a not in Fψ(τ), it follows that v is
in V (U,ψa) for all a in F . Therefore, by (i) of Lemma 1.6, we have v = 0. To
prove that the map from (i) is surjective, it will suffice to prove that each direct
summand is in the image; for simplicity of notation, we will prove that

c-IndB̃
Z̃U
VU,ψa1 ⊕ 0 ⊕ · · · ⊕ 0

is in the image. Let f be in c-IndB̃
Z̃U
VU,ψa1 . We have

f

([
a1a2

a−1
1 a−1

2

]
, 1

)
= (a1, a2)f

(([
a1

a−1

]
, 1

)([
a2

a−1
2

]
, 1

))

for a1 and a2 in F×. Define f ′ : F× → VU,ψa1 by

f ′(a) = f

([
a

a−1

]
, 1

)
.

The function f ′ is locally constant and compactly supported. Also,

f ′(−a) = ε(τ, ψ)δ1(−1)(−1, a)f ′(a)

for a in F×. In particular, f ′(−a) is non-zero if and only if f ′(a) is non-zero for
a in F×. There exists a finite subset S of V such that for every a in the support
of f ′, there exists v in S such that f ′(a) = v + V (U,ψa1). Let M be a positive
integer such that f ′(ak) = f ′(a) for a in F× and k in 1 + pM , such that

τ

([
k

k−1

]
, 1

)
v = v (15)

for k in 1+pM and v in S, such that 1+pM is contained in o×2, and such that −1
is not contained in 1+ pM . An argument now shows that there exist d1, . . . , dm in
F× such that d1(1+pM),−d1(1+pM), . . . , dm(1+pM),−dm(1+pM) are disjoint,
and f ′ is supported in the disjoint union

d1(1 + p
M ) ⊔−d1(1 + p

M ) ⊔ · · · ⊔ dm(1 + p
M ) ⊔ −dm(1 + p

M ).

Let v1, . . . , vm in S be such that f ′(d1) = v1 + V (U,ψa1), . . . , f ′(dm) = vm +
V (U,ψa1). Then f ′(−d1) = ε(τ, ψ)δ1(−1)(−1, d1)v1 + V (U,ψa1), . . . , f ′(−dm) =
ε(τ, ψ)δ1(−1)(−1, dm)vm + V (U,ψa1). Let j be in {1, . . . ,m}. By (ii) of Lemma
1.6, there exists wj in V such that

wj − τ

([
dj

d−1
j

]
, 1

)−1

vj ∈ V (U,ψb) (16)

for b in a1d
2
j(1 + pM )2, and such that wj is in V (U,ψb) for b in F but not in

a1d
2
j(1 + pM )2. Let k be in 1 + pM and set a = djk. By (16) for b = a1a

2, and the
rule (12), we have

τ

([
a
a−1

]
, 1

)
wj−τ

(([
a
a−1

]
, 1

)([
dj

d−1
j

]
, 1

)−1
)
vj ∈ V (U,ψa1a

2a−2

);
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that is

τ

([
a

a−1

]
, 1

)
wj − vj ∈ V (U,ψa1) (17)

for a in dj(1+pM ). Note that the simplification uses (F×, 1+pM ) = 1, so that the
relevant cocycle is trivial, and (15) for v = vj . Since (17) holds for a in dj(1+pM),
we also have

τ

([
a

a−1

]
, 1

)
wj − ε(τ, ψ)δ1(−1)(−1, dj)vj ∈ V (U,ψa1)

for a in −dj(1 + pM ). Next, let a be in F× but not in dj(1 + pM ) ⊔−dj(1 + pM ).
Set b = a1a

2. Then b is not in a1d
2
j(1 + pM )2. Hence, wj is in V (U,ψb), and by

the rule (12), we thus have

τ

([
a

a−1

]
, 1

)
wj ∈ V (U,ψa1)

for a in F× and a not in dj(1 + pM ) ⊔ −dj(1 + pM ). Similarly,

τ

([
a

a−1

]
, 1

)
wj ∈ V (U,ψa2), . . . , τ

([
a

a−1

]
, 1

)
wj ∈ V (U,ψam)

for a in F×. Finally, as 0 is not in a1d
2
j(1 + pM )2, the vector wj is in V (U). Now

set v = w1 + · · · + wm. Then v is in V (U), hv,1 = f , and hv,2 = 0, . . . , hv,l = 0.
(ii) To prove the assertions of (ii) it will suffice to prove that, for every i in

{1, . . . , l}, the restriction of T to the subspace Vi of V (U) corresponding to the

subspace 0 ⊕ · · · ⊕ 0 ⊕ c-IndB̃
Z̃U
VU,ψai ⊕ 0 ⊕ · · · ⊕ 0 of the direct sum is injective

and has image S(aiF
×2). For simplicity of notation, we take i = 1. Let v be in

V1. We have hv,2 = 0, . . . , hv,m = 0, so that

τ

([
a

a−1

]
, 1

)
v ∈ V (U,ψa2), . . . , τ

([
a

a−1

]
, 1

)
v ∈ V (U,ψal)

for a in F×, and hence

λ2

(
τ

([
a

a−1

]
, 1

)
v

)
= · · · = λm

(
τ

([
a

a−1

]
, 1

)
v

)
= 0

for a in F×. This implies that T (v) = fv is supported on a1F
×2. Moreover, if a

is in F×, and x = a1a
2, then

fv(x) = δ1(a)
−1χ(a)−1λ1

(
hv,1

([
a

a−1

]
, 1

))
.

Assume that T (v) = fv = 0. Then, since the map sending v + V (U,ψa1) to λ1(v)
is an isomorphism VU,ψa1

∼= C of complex vector spaces, we must have hv,1 = 0;

this implies v = 0. Finally, let f1 be in S(a1F
×2). We define f : B̃ → VU,ψa1 by

the formula

λ1

(
f

([
a b

a−1

]
, ε

))
= εψa1(ab)δ1(a)χ(a)f1(a1a

2)



520 Brooks Roberts and Ralf Schmidt

for a in F×, b in F and ε = ±1. It can be verified that f is in c-IndB̃
Z̃U
VU,ψa1 . If

v is the corresponding element of V1, then T (v) = f1.

We can now give the proof of the existence of Kirillov-type models for meta-
plectic representations.

Proof of Theorem 1.4. We use the map T from Lemma 1.5. We first prove that T
is injective. There is a natural exact sequence

0 → V (U) → V → VU = V/V (U) → 0

of B̃ spaces. If τ is supercuspidal, then VU = 0 by definition. If τ is not su-
percuspidal, then by Section II of [W1] (see also the summary in [BS], pages
112–115) τ is isomorphic to an irreducible principal series representation, an even
Weil representation, or a special representation. In the first case, it can be shown
that VU is two-dimensional; in the second two cases, it can be shown that VU is
one-dimensional. Therefore, VU is finite-dimensional. There is an inclusion

ker(T )/ ker(T ) ∩ V (U) →֒ VU = V/V (U)

of B̃ spaces. By (ii) of Lemma 1.7 we have ker(T ) ∩ V (U) = 0, so that ker(T )
is finite-dimensional. Since ker(T ) is finite-dimensional, there exists a positive
integer n such that each vector in ker(T ) is fixed by the subgroup

([
1
pn 1

]
, 1

)

of S̃L(2, F ). In particular, this subgroup of S̃L(2, F ) preserves ker(T ). Since ker(T )
is also a B̃ subspace, the identity

([
1

−1

]
, 1

)
=

([
−̟n

−̟−n

]
, 1

)([
1 −̟−n

1

]
, 1

)

([
1
̟n 1

]
, 1

)([
1 −̟−n

1

]
, 1

)

implies that this element preserves ker(T ). Since this element and B̃ together

generate S̃L(2, F ), ker(T ) is an S̃L(2, F ) subspace. As τ is irreducible, we have
ker(T ) = 0 or ker(T ) = V . The map T is non-zero by (ii) of Lemma 1.7; therefore,
ker(T ) = 0. We now define M(τ, χ) to be the image of T , and transfer the action

of S̃L(2, F ) to M(τ, χ) via T . The assertions (i), (ii) and (iii) follow from Lemma
1.5 and (ii) of Lemma 1.7.

2 Basic observations

Let (τ, V ) be a smooth, genuine representation of S̃L(2, F ) and let χ be a character
of o×. In this section we answer two basic questions about the spaces Vψ(τ, n, χ).
The first three lemmas determine the general conditions on χ and n that must be
satisfied for Vψ(τ, n, χ) to be non-zero. We will prove that if Vψ(τ, n, χ) is non-zero
then n ≥ 2val(2) and χ is trivial on 1 + pn.
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Lemma 2.1. Let (τ, V ) be a smooth, genuine representation of S̃L(2, F ) and let

χ be a character of o×. Assume that the space Vψ(τ, 2val(2), χ) is non-zero. Then

χ is trivial on (1 + 4o) ∩ o×.

Proof. Let v be a non-zero vector in Vψ(τ, 2val(2), χ). Let x be in F , let y be in
F× and assume that 1 + xy is in F×. A computation shows that

([
1
y 1

]
, 1

)([
1 x

1

]
, 1r

)

=

([
(1 + xy )−1

1 + xy

]
, 1

)([
1 x(1 + xy)

1

]
, 1

)
(18)

([
1

(1 + xy)−1y 1

]
, (−y, 1 + xy)

)
.

Now set y = 4 and assume that x is in o and 1 + 4x is in o×. Applying both
sides of (18) to v, we find that 1 = (−4, 1 + 4x)χ(1 + 4x)−1δ1((1 + 4x)−1) =
(−1, 1 + 4x)χ(1 + 4x)−1δ1(1 + 4x). By Lemma 1.3 we have δ1(1 + 4x) = 1 and by
(ii) of Lemma 1.2 we have (−1, 1 + 4x) = 1, so that χ(1 + 4x) = 1 for all x ∈ o

such that 1 + 4x is in o×.

Lemma 2.2. Let (τ, V ) be a smooth, genuine representation of S̃L(2, F ) and let

χ be a character of o×. The space Vψ(τ, 2val(2) − 1, χ) is zero.

Proof. Assume that Vψ(τ, 2val(2) − 1, χ) contains a non-zero vector v; we will
obtain a contradiction. Let x in p and y in 4̟−1o with y non-zero be such that
1 + xy is in o×, so that 1 + xy is in (1 + 4o) ∩ o×. Applying both sides of (18)
to v, we get 1 = (−y, 1 + xy)χ(1 + xy)−1δ1(1 + xy). By Lemma 2.1 we have
χ(1 +xy) = 1; by Lemma 1.3 we have δ1(1 + xy) = 1. Therefore, (−y, 1+ xy) = 1
for all x in p and non-zero y in 4̟−1o such that 1 + xy is in o×. Letting y be
−4̟−1 and x be −̟b where b is in o, we find that (̟, 1 + 4b) = 1 for all b in o

such that 1 + 4b is in o×. In other words, (̟, (1 + 4o)∩ o×) = 1. This contradicts
(iii) of Lemma 1.2.

Lemma 2.3. Let (τ, V ) be a smooth, genuine representation of S̃L(2, F ), let χ be

a character of o× and let n be an integer. Assume that Vψ(τ, n, χ) is non-zero.

Then n ≥ 2val(2) and χ is trivial on 1 + pn.

Proof. Let v be a non-zero vector in Vψ(τ, n, χ). By Lemma 2.2 we have n ≥
2val(2). We may assume n > 2val(2), since the case n = 2val(2) is Lemma 2.1.
Let x be in o and y in pn with y non-zero. Applying both sides of (18) to v we
obtain 1 = (−y, 1 + xy)χ(1 + xy)−1δ1((1 + xy)−1). By (i) of Lemma 1.2 we have
(−y, 1+xy) = 1, and by Lemma 1.3 we have δ1(1+xy) = 1. Hence, 1 = χ(1+xy).
The lemma follows.

The second question that we deal with in this section concerns an alternative
characterization of the spaces Vψ(τ, n, χ). To formulate the question, assume that
Vψ(τ, n, χ) is non-zero. By Lemma 2.3 we know that n ≥ 2val(2) and χ is trivial
on 1 + pn. Define

Γ̃0(p
n) = Γ0(p

n) × {±1} (19)
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where Γ0(p
n) is the subgroup of SL(2, o) of elements with lower left entries in pn.

The set Γ̃0(p
n) is a subgroup of S̃L(2, F ). Moreover, the group Γ̃0(p

n) is generated

by (1,±1) and the elements of S̃L(2, F ) that appear in (1), (2) and (3). It follows
that for every element (k, ε) of Γ̃0(p

n) there exists an element χ̃(k, ε) of C× such
that

τ(k, ε)v = χ̃(k, ε)v (20)

for all v in Vψ(τ, n, χ). Evidently, the function that sends (k, ε) to χ̃(k, ε) is a char-

acter of Γ̃0(p
n). The next two results determine the formula for the character χ̃ on

an arbitrary element of Γ̃0(p
n). Though we will not need this formula to prove the

main theorem, we include it because it may be of some use in other investigations.
For example, this formula is essential for determining explicit information about
metaplectic vectors in principal series representations if the residual characteristic
of F is even.

Lemma 2.4. Let χ be a character of o× and let n be an integer such that n ≥
2val(2) and χ is trivial on 1 + pn. Define a function f : Γ̃0(p

n) → C× in the

following way. If n = 0, then define f(k, ε) = ε. If n is positive, then define

f

([
a b
c d

]
, ε

)
= εy

([
a b
c d

])
χ(d)−1δ1(d)

where y : Γ0(p) → {±1} is given by

y

([
a b
c d

])
=





1 if c = 0,
(d,−1) if c 6= 0 and val(c) is odd,
(d,−c) if c 6= 0 and val(c) is even.

(21)

The function f is a character of Γ̃0(p
n).

Proof. If F has odd residual characteristic, then it is straightforward to verify
that f is a character: note that in this case the cocycle c is trivial on Γ0(p

n), the
function y is constantly 1, and δ1 is 1 on o× by Lemma 1.3. Assume that F has
even residual characteristic, and let

k =

[
a b
c d

]
, k′ =

[
a′ b′

c′ d′

]

be in Γ0(p
n). Since we are assuming that F has even residual characteristic, the

integer n is positive and a, d, a′ and d′ are in o×. We have to prove that

f

([
a b
c d

]
, 1

)
f

([
a′ b′

c′ d′

]
, 1

)
= f

(([
a b
c d

]
, 1

)([
a′ b′

c′ d′

]
, 1

))
.

Using the definition of f and (8) this is equivalent to

y(k)y(k′) = y(kk′)c(k, k′)(d, d′). (22)
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Using the definitions and the formula for the cocycle, some computations show
that (22) is true if c = 0 or c′ = 0. Assume that c 6= 0 and c′ 6= 0. The formulas
for y and the cocycle imply that, in general,

y

([
1 ∗

1

]
g

)
= y(g) and c

([
1 ∗

1

]
g, g′

)
= c(g, g′).

We may therefore assume that b = 0. In other words, we are reduced to proving
that

y

([
a

a−1

][
1
c 1

])
y(k′)

= y

([
a

a−1

][
1
c 1

]
k′
)
c

([
a

a−1

][
1
c 1

]
, k′
)

(a, d′).

(23)

Now (22) has already been verified in general for upper triangular k. Applying
this observation to the first term on the left hand side and the first term on the
right hand side, using the cocycle property (6), and using the (o×, 1+4o) = 1 rule
of (ii) of Lemma 1.2, we find that (23) reduces to

y(k′) = y

([
1
c 1

]
k′
)
c

([
1
c 1

]
, k′
)
. (24)

Writing k′ =

[
a′d′ b′d′−1

c′d′ 1

][
d′ −1

d′

]
and using a similar argument, (24) reduces

to

1 = y

([
1
c 1

][
a′ b′

c′ 1

])
c

([
1
c 1

]
,

[
a′ b′

c′ 1

])

= y

([
a′ b′

c′ + ca′ 1 + cb′

])
c

([
1
c 1

]
,

[
a′ b′

c′ 1

])
.

(25)

Assume that c′ + ca′ = 0. Then (25) is equivalent to

1 = (c, c′)(−cc′, 1 + cb′). (26)

Consider the second Hilbert symbol. Since c′ = −ca′, val(−cc′) is even. Hence,
the second Hilbert symbol is 1 because of the (o×, 1 + 4o) = 1 rule. Using the
determinant condition a′ − b′c′ = 1 and c′ + ca′ = 0, we get c′ = −(1 + b′c)−1c.
Therefore, (c, c′) = (c,−(1 + b′c)−1c) = (c, 1 + b′c). If val(c) = 2val(2), this is
of the form (o×, 1 + 4o) = 1. If val(c) > 2val(2), then (c, 1 + b′c) = 1 by the
(F×, 1 + 4̟o) = 1 rule of (i) of Lemma 1.2, so that (c, c′) = 1. Hence (c, c′) = 1
in both cases, and (26) is verified.

Assume that val(c′ + ca′) is non-zero. Applying the definitions of y and c
shows that (25) is equivalent to

1 = (1 + cb′,−1)(c, c′)(−cc′, c′ + ca′)(c′ + ca′, 1 + cb′). (27)

The first Hilbert symbol is 1 by the (o×, 1 + 4o) = 1 rule. Using the determinant
condition a′ − b′c′ = 1 to eliminate a′, we get

1 = (c, c′)(−cc′, c+ c′ + cc′b′)(1 + cb′, c+ c′ + cc′b′). (28)
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Assume that val(c′) > val(c). Then c + c′ + cc′b′ = c(1 + c−1c′)
(
1 + c′b′

1+c−1c′

)
.

Since val(c′) > val(c) ≥ 2val(2), we have
(
1 + cb′, 1 + c′b′

1+c−1c′

)
= 1 by the (F×, 1+

4̟o) = 1 rule; also, 1 + c−1c′ is in o×. Hence, we have to show

1 = (c, c′)(−cc′, c(1 + c−1c′))(1 + cb′, c(1 + c−1c′)), (29)

which is
1 = (−cc′, 1 + c−1c′)(1 + cb′, c(1 + c−1c′)). (30)

The first Hilbert symbol is 1 since (x, 1 − x) = 1 for all x in F such that x and
1 − x are in F×. Hence we are reduced to

1 = (1 + cb′, 1 + c−1c′)(1 + cb′, c). (31)

The first Hilbert symbol is 1 by the (o×, 1 +4o) = 1 rule. If val(c) > 2val(2), then
the second Hilbert symbol is also 1 by the (F×, 1 + 4̟o) = 1 rule. If val(c) =
2val(2), which is even, then the second Hilbert symbol is 1 by the (o×, 1 + 4o) = 1
rule. Hence (31) is verified.

Now assume that val(c) > val(c′). Then c + c′ + cc′b′ = c′(1 + c′−1c)
(
1 +

cb′

1+c′−1c

)
. Again, 1 + c′−1c is in o× and 1 + cb′

1+c′−1c is in 1 + 4̟o. Hence we have

to show
1 = (c, c′)(−cc′, c′(1 + c′−1c))(1 + cb′, c′(1 + c′−1c)), (32)

which is
1 = (−cc′, 1 + c′−1c)(1 + cb′, c′(1 + c′−1c)). (33)

The first Hilbert symbol is 1 by the (x, 1 − x) = 1 rule. Hence we are reduced to

1 = (1 + cb′, 1 + c′−1c)(1 + cb′, c′). (34)

The first Hilbert symbol is 1 by the (o×, 1 + 4o) = 1 rule. Since val(c) > 2val(2),
the element 1 + cb′ is in 1 + 4̟o, and again the second Hilbert symbol is also 1
by the (F×, 1 + 4̟o) = 1 rule. Hence (34) is verified.

Finally, assume that val(c) = val(c′). Write c = u̟k and c′ = v̟k with u
and v in o× and k ≥ n ≥ 2val(2). Then (28) is equivalent to

1 = (u, v)(−uv, u+ v+ uvb′̟k)(1 + u̟kb′, ̟k)(1 +u̟kb′, u+ v+ uvb′̟k). (35)

If k > 2val(2), this simplifies to

1 = (−uv, 1 + u−1v + vb′̟k). (36)

But

(−uv, 1 + u−1v + vb′̟k) =(−u−1v, 1 + u−1v + vb′̟k)

· (1 + ub′̟k, 1 + u−1v + vb′̟k)

=(−u−1v − vb′̟k, 1 + u−1v + vb′̟k)

=1
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by the (1 − x, x) = 1 rule. Hence (35) is verified if k > 2val(2). Assume now that
k = 2val(2), so that in particular k is even. Then (35) is equivalent to

1 = (−uv, 1 + u−1v + vb′̟k)(1 + u̟kb′, 1 + u−1v + vb′̟k). (37)

If u+ v is in o×, then this is equivalent to

1 = (−uv, 1 + u−1v). (38)

This is true by the (1 − x, x) = 1 rule. Assume that u + v is in p. Write v =
u(−1 + w̟t) with w in o× and t ≥ 1. Substituting u−1v = −1 + w̟t and
−uv = u2(1 − w̟t) into (37), we get

1 = (1 − w̟t, w̟t + vb′̟k)(1 + u̟kb′, w̟t + vb′̟k). (39)

Since u is in −v + p, the second Hilbert symbol equals (1 − v̟kb′, w̟t + vb′̟k)
by the (F×, 1 + 4̟o) = 1 rule. Hence (39) is equivalent to

1 = ((1 − w̟t)(1 − v̟kb′), w̟t + vb′̟k). (40)

Multiplying out, we get

1 = (1 − w̟t − vb′̟k + vw̟t+kb′, w̟t + vb′̟k). (41)

The term vw̟t+kb′ can be omitted by the (F×, 1+4̟o) = 1 rule because t+k >
2val(2). Then (41) holds by the (x, 1− x) = 1 rule. This completes the proof.

Proposition 2.5. Let (τ, V ) be a smooth, genuine representation of S̃L(2, F ), let

χ be a character of o×, and let n be an integer. If Vψ(τ, n, χ) is non-zero, then

n ≥ 2val(2), χ is trivial on 1 + pn, and the character χ̃ of Γ̃0(p
n) defined in (20)

is the character f from Lemma 2.4.

Proof. Assume that Vψ(τ, n, χ) is non-zero. Then n ≥ 2val(2) and χ is trivial
on 1 + pn by Lemma 2.3. To prove that χ̃ is f it suffices to prove that these two
characters agree on the elements in (1), (2) and (3). This follows from the involved
formulas.

3 Proof of the main theorem

In this section we prove the main theorem. To do so, we will first make two
algebraic reductions, and then use the Kirillov-type model from Theorem 1.4.
Making the reductions requires some definitions and facts. Let (τ, V ) be a smooth,

genuine representation of S̃L(2, F ) and let χ be a character of o×. We define
Vψ(τ,∞, χ) to be the union of all the spaces Vψ(τ, n, χ) as n runs over the integers.
The set Vψ(τ,∞, χ) is a subspace of V because the Vψ(τ, n, χ) are an ascending
sequence of vector spaces. Because τ is a smooth representation, a vector v in V
is contained in Vψ(τ,∞, χ) if and only if (1) and (2) hold. We define

α2 : Vψ(τ,∞, χ) → Vψ(τ,∞, χ)
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by the formula (4). For all n, this operator extends the level raising operator α2

from Vψ(τ, n, χ) to Vψ(τ, n + 2, χ). The following lemma characterizes vectors in
the image of α2.

Lemma 3.1. Let (τ, V ) be a smooth, genuine representation of S̃L(2, F ) and let χ
be a character of o×. Let n be an integer, and let v be in Vψ(τ, n, χ). The following

statements are equivalent:

(i) There exists w in Vψ(τ, n− 2, χ) such that v = α2w.

(ii) There exists w in Vψ(τ,∞, χ) such that v = α2w.

(iii) The vector v is invariant under the subgroup

([
1 p−2

1

]
, 1

)
. (42)

Proof. (i) =⇒ (ii). This is clear.
(ii) =⇒ (iii). Suppose that v = α2w for some w in Vψ(τ,∞, χ). We have

τ

([
1 p−2

1

]
, 1

)
v = α2τ

([
1 o

1

]
, 1

)
w = α2w = v,

so that v is invariant under the group in (42).
(iii) =⇒ (ii). Assume that v is invariant under the group in (42). Define

w = τ

([
̟−1

̟

]
, 1

)−1

v = τ

([
̟

̟−1

]
, (̟,̟)

)
v,

so that v = α2w. The condition (2) for w is satisfied because the subgroup of

elements of S̃L(2, F ) whose first components are diagonal matrices is commutative.
Also,

τ

([
1 o

1

]
, 1

)
w = τ

([
̟

̟−1

]
, (̟,̟)

)
τ

([
1 p−2

1

]
, 1

)
v

= τ

([
̟

̟−1

]
, (̟,̟)

)
v

= w,

and

τ

([
1

pn−2 1

]
, 1

)
w = τ

([
̟

̟−1

]
, (̟,̟)

)
τ

([
1
pn 1

]
, 1

)
v

= τ

([
̟

̟−1

]
, (̟,̟)

)
v

= w.

It follows that w is in Vψ(τ, n− 2, χ).

The first reduction proves that the sum from the main theorem can be written
in terms of Vψ(τ,∞, χ).
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Lemma 3.2. Let (τ, V ) be a smooth, genuine representation of S̃L(2, F ) and

let χ be a character of o×. The vector spaces Vψ(τ,∞, χ)/α2Vψ(τ,∞, χ) and

⊕nVψ(τ, n, χ)new have the same dimension.

Proof. Let n be an integer, and consider the natural map

Vψ(τ, n, χ) → Vψ(τ, n+ 1, χ)/α2Vψ(τ, n− 1, χ)

induced by the inclusion of Vψ(τ, n, χ) into Vψ(τ, n + 1, χ). The kernel of this
map is Vψ(τ, n, χ) ∩ α2Vψ(τ, n − 1, χ). The (ii) =⇒ (i) assertion of Lemma 3.1
implies that this subspace is α2Vψ(τ, n− 2, χ). It follows that there is a sequence
of inclusions

· · · →֒ Vψ(τ, n, χ)/α2Vψ(τ, n− 2, χ) →֒ Vψ(τ, n+ 1, χ)/α2Vψ(τ, n− 1, χ) →֒ · · · .

If n ≤ 2val(2) − 1, then the n-th term of the sequence is zero by Lemma 2.2. For
each integer n, we also have a natural map

Vψ(τ, n, χ) → Vψ(τ,∞, χ)/α2Vψ(τ,∞, χ).

The (ii) =⇒ (i) assertion of Lemma 3.1 also implies that the kernel of this map is
α2Vψ(τ, n− 2, χ), so that there is an inclusion

Vψ(τ, n, χ)/α2Vψ(τ, n− 2, χ) →֒ Vψ(τ,∞, χ)/α2Vψ(τ,∞, χ).

Let Wn be the image of Vψ(τ, n, χ)/α2Vψ(τ, n − 2, χ). We have a sequence of
subspaces

· · · ⊂Wn ⊂Wn+1 ⊂ · · · ⊂ Vψ(τ,∞, χ)/α2Vψ(τ,∞, χ)

with Wn = 0 for n ≤ 2val(2) − 1, and the subspace generated by all the Wn is
Vψ(τ,∞, χ)/α2Vψ(τ,∞, χ). Therefore, the vector space Vψ(τ,∞, χ)/α2Vψ(τ,∞, χ)
has the same dimension as the direct sum ⊕nWn+1/Wn. But

Wn+1/Wn
∼= Vψ(τ, n+ 1, χ)/

(
Vψ(τ, n, χ) + α2Vψ(τ, n− 1, χ)

)
,

and this last space is just Vψ(τ, n+ 1, χ)new, by definition. Therefore, the dimen-
sion of Vψ(τ,∞, χ)/α2Vψ(τ,∞, χ) is the same as the dimension of the direct sum
⊕nVψ(τ, n+ 1, χ)new.

The previous lemma reduces proving the main theorem to computing the di-
mension of Vψ(τ,∞, χ)/α2Vψ(τ,∞, χ). The next lemma reduces the computation
of the dimension of this quotient to the computation of the dimension of a concrete
space of metaplectic vectors. In the lemma we use the Haar measure on F that
assigns o volume 1.

Lemma 3.3. Let (τ, V ) be a smooth, genuine representation of S̃L(2, F ) and let

χ be a character of o×. If v is in Vψ(τ,∞, χ), then

µv =
1

q2

∫

p−2

τ

([
1 x

1

]
, 1

)
v dx
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is contained in Vψ(τ,∞, χ), so that this formula defines a linear map

µ : Vψ(τ,∞, χ) → Vψ(τ,∞, χ).

The operator µ is a projection, i.e., µ2 = µ, and Vψ(τ,∞, χ) = kerµ⊕im µ. More-

over, the image of µ is α2Vψ(τ,∞, χ), and hence there is a natural isomorphism

kerµ
∼
−→ Vψ(τ,∞, χ)/α2Vψ(τ,∞, χ).

Proof. It is straightforward to verify that µv is contained in Vψ(τ,∞, χ) for v
in Vψ(τ,∞, χ), and a direct computation shows that µ2 = µ. It is clear from the
definition of µ that the vectors in the image of µ are invariant under the group (42),
so that such vectors are contained in α2Vψ(τ,∞, χ) by the implication (iii) =⇒ (ii)
of Lemma 3.1. Conversely, if v is in Vψ(τ,∞, χ), then a computation shows that
µα2v = α2v, so that α2v is contained in the image of µ.

If (τ, V ) is a smooth, genuine representation of S̃L(2, F ) and χ is a character
of o×, then we denote the kernel of µ by Vψ,prim(τ,∞, χ), and refer to the elements
of Vψ,prim(τ,∞, χ) as primitive vectors. By the previous two lemmas, proving the
main theorem is reduced to computing the dimension of the space of primitive
vectors. In the following proof of the main theorem we compute the dimension
of the space of primitive vectors using the Kirillov-type model from Theorem 1.4.
It is at this point that we use the assumption from the main theorem that τ is
irreducible.

Proof of the Main Theorem. Assume χ(−1) 6= ε(τ, ψ). Let n be an integer and
assume that v is in Vψ(τ, n, χ). Then by the definition of Vψ(τ, n, χ) we have

τ

([
−1

−1

]
, 1

)
v = χ(−1)δ1(−1)v.

On the other hand, by the definition of ε(τ, ψ),

τ

([
−1

−1

]
, 1

)
v = ε(τ, ψ)δ1(−1)v.

Since χ(−1) 6= ε(τ, ψ) we must have v = 0.
Assume that χ(−1) = ε(τ, ψ). By Lemma 3.2 and Lemma 3.3, it suffices to

prove that
dimVψ,prim(τ,∞, χ) = #Fψ(τ)/F×2.

The character χ of o× admits an extension to a character of F× that we will also
refer to as χ. We will use the Kirillov-type model M(τ, χ) for τ from Theorem
1.4. We recall that:

(i) The vectors in M(τ, χ) are certain functions f : F× → C that are locally
constant, have relatively compact support in F , and are supported in Fψ(τ);
moreover, the space S(Fψ(τ)) of locally constant, compactly supported func-
tions on Fψ(τ) is contained in M(τ, χ).
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(ii) For f in M(τ, χ), n in F and x in F× we have

τ

([
1 n

1

]
, 1

)
f(x) = ψ(nx)f(x).

(iii) For f in M(τ, χ), a in F× and x in F× we have

τ

([
a

a−1

]
, 1

)
f(x) = δ1(a)χ(a)f(a2x).

From (ii), (1), and the fact that ψ has conductor o, we see that if f is in Vψ(τ,∞, χ),
then the support of f is contained in o; from (iii) and (2), we see that f(v2x) = f(x)
for all x in F× and v in o×. Now let f be in Vψ,prim(τ,∞, χ). Then

0 = µf =
1

q2

∫

p−2

τ

([
1 x

1

])
f dx.

Hence, for all y in o,

0 =



∫

p−2

ψ(xy) dx


 f(y).

Since the conductor of ψ is o, f is supported on o× ⊔̟o×. Using this and (i), it
follows that f is determined by its values on the set

(
Fψ(τ) ∩ o

×
)
/o×2 ⊔

(
Fψ(τ) ∩̟o

×
)
/o×2. (43)

The natural map from this set to Fψ(τ)/F×2 is a bijection. Therefore, the di-
mension of the vector space Vψ,prim(τ,∞, χ) is at most #Fψ(τ)/F×2. Conversely,
suppose that to×2 is in the set in (43) with t in Fψ(τ) ∩ o× or in Fψ(τ) ∩ ̟o×.
Let fto×2 be the characteristic function of to×2. This function lies in the model
M(τ, χ) by i). Moreover, a calculation shows that fto×2 is in Vψ,prim(τ,∞, χ).
The functions fto×2 as to×2 varies over the set (43) are linearly independent ele-
ments of Vψ,prim(τ,∞, χ). Therefore, the dimension of Vψ,prim(τ,∞, χ) is at least
#Fψ(τ)/F×2. This completes the proof.

To end this paper we briefly describe how similar reasoning proves the analo-
gous theorem in the GL(2) setting. Let (π, V ) be a generic, irreducible, admissible
representation of GL(2, F ). For n a non-negative integer, let V (π, n) be the sub-
space of vectors v in V that are stabilized by the subgroup of elements

[
a b
c d

]

of GL(2, o) such that c ≡ 0 mod pn and d ≡ 1 mod pn. Define α : V (π, n) −→
V (π, n+ 1) by

αv = π

([
1

̟

])
v.
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Define the subspace V (π, n)old of oldforms in V (π, n) as the subspace spanned by
V (π, n− 1) and αV (π, n− 1). Our goal is to prove that

∑
n

dimV (π, n)/V (π, n)old

is one. Define V (π,∞) to be the subspace that is the union of all the spaces
V (π, n). We have

∑
n

dimV (π, n)/V (π, n)old = dim V (π,∞)/αV (π,∞), as in the

S̃L(2) case. Define µGL(2) : V (π,∞) → V (π,∞) by

µGL(2)v =
1

q

∫

p−1

π

([
1 x

1

])
v dx.

The operator µGL(2) is a well-defined projection, and kerµGL(2) is isomorphic to
V (π,∞)/αV (π,∞), so that we are reduced to proving that the space kerµGL(2) of
primitive vectors is one-dimensional. A computation now shows that if the space
of π is taken to be the Kirillov model of π with respect to ψ, then the space of
primitive vectors is spanned by the characteristic function of o×, which completes
the proof. In closing, we note that if π is supercuspidal, then the characteristic
function of o× in the Kirillov model with respect to ψ is the newform of π; the above
development shows that this vector is also significant in the non-supercuspidal case.
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(1964), 143–211.


