
On Modular Forms for the Paramodular Group

Brooks Roberts and Ralf Schmidt

Contents

1 Definitions 3

2 Linear independence at different levels 6

3 The level raising operators 8

4 Oldforms and newforms 13

5 Saito–Kurokawa liftings 16

6 Two theorems 23

Appendix 26

References 28

Introduction

Let F be a p–adic field, and let G be the algebraic F–group GSp(4). In our paper [RS] we presented
a conjectural theory of local newforms for irreducible, admissible, generic representations of G(F )
with trivial central character. The main feature of this theory is that it considers fixed vectors under
the paramodular groups K(pn), a certain family of compact-open subgroups. The group K(p0) is
equal to the standard maximal compact subgroup G(o), where o is the ring of integers of F . In
fact, K(p0) and K(p1) represent the two conjugacy classes of maximal compact subgroups of G(F ).
In general K(pn) can be conjugated into K(p0) if n is even, and into K(p1) if n is odd. Our theory is
analogous to Casselman’s well-known theory for representations of GL(2, F ); see [Cas]. The main
conjecture made in [RS] states that for each irreducible, admissible, generic representation (π, V )
of PGSp(4, F ) there exists an n such that the space V (n) of K(pn) invariant vectors is non-zero; if
n0 is the minimal such n then dimC(V (n0)) = 1; and the Novodvorski zeta integral of a suitably
normalized vector in V (n0) computes the L–factor L(s, π) (for this last statement we assume that
V is the Whittaker model of π).

We recently proved all parts of this conjecture; it is now a theorem1. Parts of the main theorem
1It was still a conjecture at the time of the Arakawa conference.
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have been generalized to include non-generic representations. In addition, there is a description of
oldforms, that is, the spaces V (n) for n > n0. This description is based on certain linear operators
θ, θ′ : V (n) → V (n+ 1) and η : V (n) → V (n+ 2), which we call level raising operators and which
play a prominent role in our theory.

Now G = GSp(4) is the group behind classical Siegel modular forms of degree 2, in the sense
that such a modular form can be considered as a function on the adelic group G(AQ), where it
generates an automorphic representation of this group. Exploiting this link between modular forms
and representations, we shall explore in this paper the consequences of our local newform theory
for Siegel modular forms of degree 2 with respect to paramodular groups. We shall explain how our
local theory will imply a global Atkin–Lehner style theory of old– and newforms for paramodular
cusp forms, provided we accept some global results on the discrete spectrum of G(A), which have
been announced but not yet published.

We shall start in a classical setting, defining the paramodular groups Γpara(N) for positive integers
N , and the corresponding spaces Sk(N) of cusp forms of degree 2. We shall then define, for a prime
number p, level raising operators θp and θ′p, which multiply the level by p, and ηp, which multiplies
the level by p2. These operators are compatible with the local operators mentioned above, and
the connection will be explained. Perhaps surprisingly, the ηp and θp operator are compatible, via
the Fourier–Jacobi expansion, with the well-known Up and Vp operators from the theory of Jacobi
forms. Paramodular oldforms will be defined, roughly speaking, as those modular forms that can be
obtained by repeatedly applying the three level raising operators. The space of newforms is defined
as the orthogonal complement of the oldforms with respect to the Petersson inner product. We
shall formulate conjectural Atkin–Lehner type results for the newforms thus defined, and explain
how these results would follow from our local theory together with some plausible global results
that are not yet fully available.

Examples of paramodular cusp forms are provided by the Saito–Kurokawa lifting. There is a
classical construction available, combining results of Skoruppa, Zagier and Gritsenko, which
produces elements of Sk(N) from elliptic modular forms of level N and weight 2k − 2. However,
we propose an alternative group theoretic construction, which gives the additional information
that the Saito–Kurokawa liftings we obtain from elliptic newforms are paramodular newforms as
defined above. In other words, there is a level-preserving Hecke-equivariant Saito–Kurokawa lifting
from cuspidal elliptic newforms (with a “−” sign in the functional equation of the L–function) to
cuspidal paramodular newforms of degree 2. We shall explain how this map can be extended to
the “certain space” of modular forms defined by Skoruppa and Zagier in [SZ].

In the final section of this paper we will consider two seemingly unrelated theorems on paramodular
cusp forms. One says that the θ operator defined before is injective. The other one says that
paramodular cusp forms of weight 1 do not exist. We shall translate these theorems into group
theoretic statements, where it turns out that the second one is the exact archimedean analogue of
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the first one.

1 Definitions

Paramodular groups

In the following we let G be the algebraic Q–group GSp(4), realized as the set of all g ∈ GL(4) such

that tgJg = xJ for some x ∈ GL(1), where J =
[

0 12

−12 0

]
. The element x is called the multiplier

of g and denoted by λ(g). The kernel of the homomorphism λ : GSp(4) → GL(1) is the symplectic
group Sp(4).

LetN be a positive integer. The Klingen congruence subgroup of levelN is the set of all γ ∈ Sp(4,Z)
such that

γ ∈


Z NZ Z Z
Z Z Z Z
Z NZ Z Z
NZ NZ NZ Z

 .
(That this is a subgroup becomes obvious by switching the first two rows and first two columns,
which amounts to an isomorphism with a more symmetric version of the symplectic group.) This
group can be enlarged to the paramodular group of level N by allowing certain denominators.
Namely, we define

Γpara(N) =


Z NZ Z Z
Z Z Z N−1Z
Z NZ Z Z
NZ NZ NZ Z

 ∩ Sp(4,Q).

Note that Γpara(N) is not contained in Γpara(M) if M |N . In fact, no paramodular group contains
any other paramodular group, since the element

1
N−1

−1
N


is contained in Γpara(N) only. We also define local paramodular groups. Let F be a non-
archimedean local field, o its ring of integers and p the maximal ideal of o. We define K(pn)
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as the group of all g ∈ GSp(4, F ) such that

g ∈


o pn o o

o o o p−n

o pn o o

pn pn pn o

 and det(g) ∈ o∗. (1)

These are the local analogues of the groups Γpara(N). In fact, if F = Q, then

Γpara(N) = G(Q) ∩G(R)+
∏
p

K(pvp(N)), (2)

where pvp(N) is the exact power of p dividing N (if p - N , then we understand K(pvp(N)) = G(Zp)).

Modular forms

Let H2 be the Siegel upper half plane of degree 2. The group G(R)+ = {g ∈ GSp(4,R) : λ(g) > 0},
which is the identity component of G(R), acts on H2 by linear fractional transformations Z 7→ g〈Z〉.
We define the usual modular factor

j(g, Z) = det(CZ +D) for Z ∈ H2 and g =
[
A B
C D

]
∈ G(R)+.

We fix a weight k, which is a positive integer. The slash operator
∣∣
k

or simply
∣∣ on functions

F : H2 → C is defined as

(F
∣∣g)(Z) = λ(g)kj(g, Z)−kF (g〈Z〉) for g ∈ G(R)+.

The factor λ(g)k = det(g)k/2 ensures that the center of G(R)+ acts trivially. A modular form F
(always of degree 2) of weight k with respect to Γpara(N) is a holomorphic function on H2 such
that F

∣∣γ = F for all γ ∈ Γpara(N). We denote the space of such modular forms by Mk(N), and the
subspace of cusp forms by Sk(N). Modular forms for the paramodular group have been considered
by various authors; see, for example, [IO] and the references therein. In this paper we shall fix the
weight k and vary the level N .

We shall often write modular forms as F (τ, z, τ ′), where
[
τ z
z τ ′

]
∈ H2. Note that elements F ∈

Mk(N) have the invariance property F (τ, z, τ ′ + t) = F (τ, z, τ ′) for t ∈ N−1Z. In particular, F has
a Fourier–Jacobi expansion

F (τ, z, τ ′) =
∞∑
m=0

fm(τ, z)e2πimτ
′
. (3)
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Here fm ∈ Jk,m is a Jacobi form of weight k and index m, as in [EZ]. Since F depends only on τ ′

modulo N−1Z, we have fm = 0 for N - m.

We shall attach to a given F ∈ Mk(N) an adelic function Φ : G(AQ) → C in the following way.
Let KN be the compact group

∏
p<∞ K(pvp(N)). Since the local multiplier maps K(pvp(N)) → Z∗p

are all surjective, it follows from strong approximation for Sp(4) that G(A) = G(Q)G(R)+KN .
Decomposing a given g ∈ G(A) accordingly as g = ρhκ, we define

Φ(g) = (F
∣∣
k
h)(I), g = ρhκ with ρ ∈ G(Q), h ∈ G(R)+, κ ∈ KN . (4)

Here I is the element
[
i 0
0 i

]
of H2. In view of (2), the function Φ is well-defined. It obviously has

the invariance properties

Φ(ρgκz) = Φ(g) for all g ∈ G(A), ρ ∈ G(Q), κ ∈ KN , z ∈ Z(A),

where Z is the center of GSp(4). In fact, Φ is an automorphic form on PGSp(4,A). One can
show that Φ is a cuspidal automorphic form if and only if F ∈ Sk(N). Assuming this is the case,
we consider the cuspidal automorphic representation π = πF generated by Φ. This representation
may not be irreducible, but it always decomposes as a finite direct sum π = ⊕iπi with irreducible
automorphic representations πi.

Atkin–Lehner involutions

We first consider local Atkin–Lehner involutions. Let again F be a non-archimedean local field,
and let o and p be as above. Let $ be a generator of p. The element

un =


1

1
$n

$n

 (5)

is called the Atkin–Lehner element of level n. It is easily checked that un normalizes the local
paramodular group K(pn). Therefore, if (π, V ) is an admissible representation of G(F ), the op-
erator π(un) induces an endomorphism of the (finite-dimensional) space V (n) of K(pn)–invariant
vectors. Assume in addition that π has trivial central character. Then, since u2

n is central, this
endomorphism on V (n) is an involution, the Atkin–Lehner involution of level n (or pn). It splits
the space V (n) into ±1 eigenspaces.

To define the global involutions, let N be a positive integer and let p be a prime dividing N . Let
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pj be the exact power of p dividing N . Choose a matrix γp ∈ Sp(4,Z) such that

γp ≡


1

1
−1

−1

 mod pj and γp ≡


1

1
1

1

 mod Np−j ,

and let

up := γp


pj

pj

1
1

 .
We call up an Atkin–Lehner element. A different choice of γp results in multiplying up from the left
with an element of the principal congruence subgroup Γ(N). Therefore the action of up on modular
forms for Γ(N) is unambiguously defined. It is easily checked using (2) that up normalizes Γpara(N).
Consequently the map F 7→ F

∣∣up defines an endomorphism of Mk(N). Its restriction to cusp forms
defines an endomorphism of Sk(N). These endomorphisms are involutions since u2

p ∈ pjΓpara(N),
as is easily checked. To summarize, for a given level N , we can define Atkin–Lehner involutions
up(F ) := F

∣∣
k
up on Mk(N) and Sk(N) for each p|N .

The relation between the local and global Atkin–Lehner involutions is as follows. Let F ∈Mk(N)
and Φ the corresponding adelic function defined above. Then up(F ) corresponds to the right
translate of Φ by the local Atkin–Lehner element upj ∈ G(Qp), where pj is the exact power of p
dividing N :

(up(F )
∣∣g)(I) = Φ(gupj ), g ∈ G(R)+, upj =


1

1
pj

pj

 . (6)

2 Linear independence at different levels

We shall prove an easy but useful result on modular forms for the paramodular group, starting
with an analogous local statement. Let F be a non-archimedean local field with ring of integers o

and maximal ideal p. Let $ be a generator of p. We define

tn :=


1

−$−n

1
$n

 .
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2.1 Lemma. Let 0 ≤ n1 < · · · < nr be integers. Let m ≥ 0 be an integer such that m < n1. Then
the subgroup H generated by K(pn1) ∩ · · · ∩K(pnr) and tm contains Sp(4, F ).

Proof: The proof will be easy once we can show that H contains all elements
1

a b
1

c d

 , where
[
a b
c d

]
∈ SL(2, F ).

By hypothesis the group H contains the elements
1

a b$−n1

1
c$nr d

 such that a, b, c, d ∈ o and
[

a b$−n1

c$nr d

]
∈ SL(2, F ).

Since H also contains tm, it will suffice to show that the subgroup H ′ of SL(2, F ) generated by[
−$−m

$m

]
,

[
a b$−n1

c$nr d

]
, a, b, c, d ∈ o, ad− bc$nr−n1 = 1

is SL(2, F ). We shall show that the conjugate subgroup H ′′ :=
[
$m

1

]
H ′

[
$−m

1

]
is equal to

SL(2, F ), which is equivalent. This subgroup H ′′ is generated by[
−1

1

]
,

[
a b$m−n1

c$nr−m d

]
, a, b, c, d ∈ o, ad− bc$nr−n1 = 1.

In particular, H ′′ contains
[

−1
1

]
and

[
1 o

1

]
, and therefore SL(2, o). It is not hard to show that

the group generated by SL(2, o) and
[
1 p−1

1

]
is all of SL(2, F ).

2.2 Proposition. Let F be a non-archimedean local field, and let (π, V ) be an admissible repre-
sentation of G(F ) with trivial central character that has no non-zero Sp(4, F ) invariant vectors.2

Then paramodular vectors in V of different levels are linearly independent. More precisely, for
i = 1, . . . , r let vi ∈ V be fixed by the paramodular group K(pni), where ni 6= nj for i 6= j. Then
v1 + . . .+ vr = 0 implies v1 = . . . = vr = 0.

2For example, π could be an irreducible, infinite-dimensional representation.
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Proof: We may assume that n1 < . . . < nr. From v1 + · · ·+ vr = 0 we obtain −v1 = v2 + · · ·+ vr.
This element is invariant under tn1 and K(pn2) ∩ · · · ∩K(pnr). Since n1 < n2, by Lemma 2.1, it is
invariant under Sp(4, F ); hence, v1 = v2 + · · ·+ vr = 0. Applying the same argument successively
gives v2 = · · · = vr = 0.

This local result has the following global analogue. Note that the corresponding statement for
Γ0(N) congruence subgroups is obviously wrong.

2.3 Proposition. Modular forms for the paramodular group of different levels are linearly in-
dependent. More precisely, for i = 1, . . . , r let Fi ∈ Mk(Ni), where Ni 6= Nj for i 6= j. Then
F1 + . . .+ Fr = 0 implies F1 = . . . = Fr = 0.

Proof: One can either exploit the relationship between modular forms and representations and
use Proposition 2.2, or one can give a direct proof along the lines of the local proofs.

An important consequence of Proposition 2.3 is the following. Soon we will have reason to consider
the spaces Mk(Γpara) :=

⊕∞
N=1Mk(N), see (18). Proposition 2.3 implies that this abstract direct

sum is the same as the sum of the spaces Mk(N) taken inside the vector space of all complex-valued
functions on H2.

3 The level raising operators

As before let Mk(N) be the space of modular forms of weight k with respect to the paramodular
group of level N . Since no Γpara(N) is contained in any other Γpara(M) (M 6= N), there are no
inclusions between (the non-zero ones of) the spaces Mk(N). In particular, for N |M , the space
Mk(N), if not zero, is not a subspace of Mk(M). However, we shall see that there are natural
operators raising the level. For a prime number p, which may or may not divide N , we shall define
linear operators θp and θ′p from Mk(N) to Mk(Np). We shall also define an operator ηp from Mk(N)
to Mk(Np2).

The η operator

We begin by defining ηp, since this is easiest. For F ∈Mk(N) let

ηpF := F
∣∣η−1
p
, where η

p
=


1

p−1

1
p

 . (7)

One easily checks that η
p
Γpara(N)η−1

p
⊃ Γpara(Np2). Hence ηp(F ) ∈ Mk(Np2), and we get linear

operators

ηp : Mk(N) −→Mk(Np2) and ηp : Sk(N) −→ Sk(Np2).
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Explicitly, we have (ηpF )(τ, z, τ ′) = pkF (τ, pz, p2τ ′). If the Fourier–Jacobi expansion of F is written
as in (3), then the Fourier–Jacobi expansion of ηpF is given by

(ηpF )(τ, z, τ ′) = pk
∞∑
m=0

fm(τ, pz)e2πimp
2τ ′ = pk

∞∑
m=0

(Upfm)(τ, z)e2πimp
2τ ′ . (8)

Here (Upfm)(τ, z) = fm(τ, pz) is the operator from Jk,m to Jk,mp2 defined in section I.4 of [EZ]. If
Φ is the adelic function corresponding to F defined in (4), then a straightforward calculation shows
that

((ηpF )
∣∣g)(I) = Φ(gη

p
), g ∈ G(R)+, η

p
=


1

p−1

1
p

 ∈ G(Qp). (9)

In other words, the adelic function corresponding to ηpF is the right translate of Φ by the p–adic
matrix ηp. From the local descriptions (6) and (9) and the matrix identity

p


1

p−1

1
p




1
1

pn

pn

 =


1

1
pn+2

pn+2




1
p−1

1
p


it is immediate that the η operator commutes with Atkin–Lehner involutions: up ◦ ηp = ηp ◦ up.
Note that the up on the right acts on Mk(N), and the up on the left acts on Mk(Np2).

The θ operator

It is not possible to conjugate the group Γpara(Np) into Γpara(N). Consequently there is no simple
operator from Mk(N) to Mk(Np) given by applying a single matrix as in the case of ηp. We
can however define an operator by applying diag(1, 1, p−1, p−1) and then average to restore the
paramodular invariance. More precisely, for F ∈Mk(N) we define

θpF =
∑

γ∈Γ0(p)\SL(2,Z)

F
∣∣
k

( 
1

1
p−1

p−1



a b

1
c d

1

)
(γ =

[
a b
c d

]
). (10)

It is easy to check that θpF is well-defined and indeed is an element of Mk(Np). Hence we get
linear operators

θp : Mk(N) −→Mk(Np) and θp : Sk(N) −→ Sk(Np).
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Assume that the Fourier–Jacobi expansion of F ∈Mk(N) is given by (3). Then a straightforward
calculation shows that

(θpF )(τ, z, τ ′) = p
∞∑
m=0

(Vpfm)(τ, z)e2πimpτ
′

(11)

with

(Vpfm)(τ, z) = pk−1
∑

γ∈Γ0(p)\SL(2,Z)

(cτ + d)−k e−2πimp cz2

cτ+d fm

(
p
aτ + b

cτ + d
,

pz

cτ + d

)
.

Note that there is a bijection Γ0(p)\SL(2,Z) → SL(2,Z)\{A ∈ M2(Z) : det(A) = p} given by
γ 7→ diag(p, 1)γ. Hence Vpfm is exactly the function defined in (2) of section I.4 of [EZ]. The Vp
operator is a linear map from Jk,m to Jk,mp. To summarize equations (8) and (11), the operator
ηp on Mk(N) is compatible with the operator Up on Jacobi forms, and θp is compatible with the
operator Vp.

We now define an adelic version of the θp operator. If Φ is a function on G(AQ) that is right
invariant under the paramodular group K(pj) ⊂ G(Qp) of some level pj , we define a new function
θpΦ by

(θpΦ)(g) =
∑[

a b
c d

]
∈SL(2,Zp)/Γ0(p)

Φ
(
g


a b

1
c d

1




1
1

p
p


︸ ︷︷ ︸

∈G(Qp)

)
(g ∈ G(A)). (12)

Then θpΦ is right invariant under K(pj+1). A standard calculation shows that if Φ corresponds to
F as in (4), then θpΦ corresponds to θpF . In other words,

((θpF )
∣∣g)(I) = (θpΦ)(g), g ∈ G(R)+. (13)

The θ′ operator

While the η operator commutes with Atkin–Lehner involutions, this is no longer true for the θ
operator. We use this fact to define a new operator θ′p from Mk(N) to Mk(Np) by

θ′p := up ◦ θp ◦ up (the up are Atkin–Lehner involutions). (14)

Note that the up on the right acts on Mk(N), and the up on the left acts on Mk(Np). We obtain
linear operators

θ′p : Mk(N) −→Mk(Np) and θ′p : Sk(N) −→ Sk(Np).
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It is clear from (13) and (6) that if F ∈ Mk(N) corresponds to the adelic function Φ, then θ′pF
corresponds to the function

(θ′pΦ)(g) :=
∑[

a b
c d

]
∈SL(2,Zp)/Γ0(p)

Φ
(
g upj+1


a b

1
c d

1




1
1

p
p

upj

︸ ︷︷ ︸
∈G(Qp)

)
(g ∈ G(A)). (15)

Here pj is the exact power of p dividing N , and upj is as in (6). The operator θ′p has the following
simple description on an element F ∈Mk(N):

θ′pF = ηpF +
∑

c∈Z/pZ

F
∣∣
k


1

1 cp−1N−1

1
1

 . (16)

To prove this formula, consider the local description (15) and the matrix identity

upj+1


a b

1
c d

1




1
1

p
p

upj = pj+1


1

d cp−j−1

1
bpj+1 a

 .
As a system of representatives for SL(2,Zp)/Γ0(p) we can choose

[
1
c 1

]
, c ∈ Z/pZ, together with

the matrix
[

1
−1

]
. The first type of representatives leads to the summation in (16). As for[

1
−1

]
, note that


1

−p−j−1

1
pj+1

 =


1

p−1

1
p




1
−p−j

1
pj


and that Φ is invariant under the rightmost matrix. In view of (9), this proves (16). Actually, the
matrices in (16) are a system of representatives for Γpara(Np)∩Γpara(N)\Γpara(Np). Hence the θ′p
operator is nothing but the natural trace operator from Mk(N) to Mk(Np). Using formula (16), it
is now easy to compute the Fourier–Jacobi expansion of θ′pF . If that of F is given by (3), then

(θ′pF )(τ, z, τ ′) =
∞∑
m=0

(
pk (Upfm/p)(τ, z) + p f̃mp(τ, z)

)
e2πimpτ

′
. (17)
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Here we understand that fm/p = 0 if p - m, and

f̃mp(τ, z) :=
{
fmp(τ, z) if N |m,
0 if N - m.

The algebra of operators

For each prime number p we have now defined operators θp, θ′p and ηp on Mk(N) multiplying the
level by p and p2, respectively. Let us put

Mk(Γpara) :=
∞⊕
N=1

Mk(N), Sk(Γpara) :=
∞⊕
N=1

Sk(N). (18)

By definition these are abstract direct sums, but see Proposition 2.3 and the remark thereafter. The
collection of operators θp for different levels N define endomorphisms of Mk(Γpara) and Sk(Γpara),
and similarly for θ′p and ηp.

3.1 Lemma. The operators θp, θ
′
p and ηp commute pairwise.

Proof: The matrix η
p

in (7) used to define ηp commutes with the matrices in (10). Hence ηp
commutes with θp. We already noted before that ηp commutes with Atkin–Lehner involutions. By
the definition in (14) it follows that ηp commutes with θ′p (this can also be seen from (16)). That
θp commutes with θ′p is easily proved using (16).

The lemma states that the algebra Ap generated by the endomorphisms θp, θ′p and ηp of Mk(N) is
commutative. Moreover, it is clear by the local descriptions we have given that for different prime
numbers p and q the p operators commute with the q operators. Hence the algebra A generated
by all these operators acting on Mk(Γpara) and Sk(Γpara) is commutative.

Local representations

Let F be a local non-archimedean field and o, p and $ as before. Let (π, V ) be an irreducible,
admissible representation of G(F ) (G = GSp(4)) with trivial central character. Let V (n) ⊂ V be
the subspace of vectors fixed by the paramodular group K(pn) as defined in (1). We already defined
the local Atkin–Lehner involutions on V (n), see (5). We further define:

• An operator η : V (n) → V (n+ 2). It is defined by applying π(diag(1, $−1, 1, $)).

• An operator θ : V (n) → V (n+ 1). It is defined by a similar summation as in (12).

• An operator θ′ : V (n) → V (n+ 1). It is defined as in (14) or, alternatively, by a formula as
in (16).
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Just as in the global case these operators generate a commutative algebra of linear operators on the
space of paramodular vectors. Now assume that the modular form F ∈Mk(N) corresponds to the
adelic function Φ, and that Φ generates an irreducible, automorphic representation π = ⊗p≤∞πp
of G(A). Then it is clear that each πp (p < ∞) contains paramodular invariant vectors. It is
further clear that the local operators η, θ and θ′ are compatible with the global operators. It is our
intention to use local representation theoretic results on paramodular vectors to obtain results on
classical modular forms.

4 Oldforms and newforms

The main purpose of the operators introduced in the previous section is to define oldforms and
newforms. Roughly speaking, all the modular forms in the images of our operators should be
considered “old”. A modular form that is orthogonal to all the oldforms is “new”. Recall the
definition (18) of the space Mk(Γpara) and the algebra A acting on it. Let I ⊂ A be the ideal
generated by ηp, θp and θ′p, where p runs through all prime numbers. Then we define

Mold
k (Γpara) := IMk(Γpara), Mold

k (N) := Mold
k (Γpara) ∩Mk(N).

Similar definitions are made for cusp forms. Elements of these spaces are called oldforms. On
the spaces Sk(N) we have the Petersson scalar product, which allows us to define the subspace of
newforms as the orthogonal complement of the oldforms:

Snew
k (N) := Sold

k (N)⊥.

We conjecture that paramodular cusp forms have a newform theory that is as nice as the well-known
newform theory for elliptic modular forms:

4.1 Conjecture. (Newforms Conjecture) Let N be a nonnegative integer.

i) Assume that F ∈ Snew
k (N) is an eigenform for the unramified local Hecke algebra Hp for

almost all p not dividing N . Then F is an eigenform for Hp for all p - N .

ii) Let Fi ∈ Snew
k (Ni), i = 1, 2, be two non-zero cusp forms. Assume that F1 and F2 are both

eigenforms for the unramified local Hecke algebra Hp for almost all p. Assume further that
for almost all p the Hecke eigenvalues of F1 and F2 coincide. Then N1 = N2, and F1 is a
multiple of F2.

Our belief in the Newforms Conjecture is based on an analogous local statement and the conjectural
structure of the discrete spectrum of PGSp(4). The local statement is as follows.
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4.2 Theorem. (Local New- and Oldforms Theorem) Let F be a non-archimedean local field
of characteristic zero, o its ring of integers, and p the maximal ideal of o. Let (π, V ) be an irreducible,
admissible representation of G(F ) with trivial central character. For n a nonnegative integer, let
V (n) be the space of vectors fixed by the local paramodular group K(pn). Assume that for some n
we have V (n) 6= 0.

i) (Local multiplicity one) If n0 is the minimal n such that V (n) 6= 0, then dim(V (n0)) = 1.

ii) (Local oldforms theorem) For any n > n0, the space V (n) is spanned by vectors obtained by
repeatedly applying the operators θ, θ′ and η to the elements of V (n0).

Part i) of this theorem states that there is always a local newform that is unique up to scalars,
provided there are paramodular vectors at all. We completed the proof of Theorem 4.2 just recently.
We also proved that every generic irreducible representation has non-zero paramodular invariant
vectors, and that for tempered representations this condition is also necessary.

We shall indicate further below how the (global) Newforms Conjecture follows from the local
Theorem 4.2 and the following two global statements.

4.3 Conjecture. (Weak Multiplicity One) If π is an irreducible admissible representation of
PGSp(4,AF ), where F is any number field, then π occurs with multiplicity at most one in the
discrete spectrum of PGSp(4,AF ).

Proofs of this conjecture have been announced by several authors, but currently there is no published
proof. Note that while this conjecture is assumed to be true over any number field, the following
conjecture depends on the arithmetic of Q and is in general wrong over other number fields.

4.4 Conjecture. (Paramodular Strong Multiplicity One) If π ∼= ⊗p≤∞πp is an irreducible
discrete automorphic representation of PGSp(4,AQ) and π is paramodular, i.e., πp admits a nonzero
vector invariant under some paramodular group for all finite p, then π is determined, up to equiv-
alence, by π∞ and all but finitely many of the πp for finite p.

Generally speaking, strong multiplicity one should not hold for irreducible discrete automorphic
representations of a connected reductive algebraic group over a number field, and it does not
hold for PGSp(4). To explain our reasoning as to why it should hold for the smaller class of
paramodular irreducible discrete automorphic representations of PGSp(4,AQ), let π ∼= ⊗p≤∞πp
be such a representation. Let [π]near be the discrete near equivalence class of π, i.e., the set of
all irreducible admissible representations π′ ∼= ⊗p≤∞π′p of PGSp(4,AQ) that occur in the discrete
spectrum of PGSp(4,AQ) and for which π′p ∼= πp for almost all p. To verify the conjecture it would
suffice to prove that [π]near contains exactly one paramodular element, namely π. Conjecturally,
[π]near is the set of automorphic elements of a conjectural Arthur packet Π(φ) corresponding to an
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Arthur parameter φ : LQ × SL(2,C) → LPGSp(4), where LQ is the conjectural Langlands group of
Q. First, assume φ is tempered. Then, conjecturally, all the elements of [π]near are tempered. We
can prove that if p < ∞, then an irreducible tempered admissible representation of PGSp(4,Qp)
is paramodular if and only if it is generic. It follows that the only paramodular element of [π]near

with infinity type π∞ is π (πp is the generic base point of the local tempered Arthur packet Π(φp)
for all p < ∞). Next, assume φ is not tempered. Then, by the Ramanujan conjecture (see 5.4
further below), π is CAP (cuspidal associated to parabolic) with respect to the Borel subgroup B,
the Klingen parabolic subgroup Q or the Siegel parabolic subgroup P of PGSp(4). We can prove
that no paramodular irreducible discrete automorphic representation of PGSp(4,AQ) is CAP with
respect to B or Q (it is here that we need the assumption that we are working over Q). Hence, π is
CAP with respect to P . Conjecturally the elements of [π]near form what is called a Saito–Kurokawa
packet, and we can prove that the only paramodular element of [π]near with infinity type π∞ is π
(as in the tempered case, πp is the base point of the local nontempered Arthur packet Π(φp) for all
p <∞). See the next section for more on Saito–Kurokawa packets.

“Proof” of the Newforms Conjecture

We shall now indicate how to obtain a proof of Conjecture 4.1 from Theorem 4.2 and the Conjectures
4.3 and 4.4. Let F ∈ Snew

k (N) be an eigenform for almost all of the unramified local Hecke
algebras. Let Φ be the corresponding adelic function G(AQ) → C, and let π be the representation
generated by Φ. Then π is a finite direct sum of irreducible cuspidal automorphic representations
πi. Let πi = ⊗πi,p with πi,p an irreducible, admissible representation of G(Qp). The archimedean
representations πi,∞ all have scalar minimal K–type of weight k and are therefore isomorphic. Since
F is Γpara(N) invariant, each πi,p for p < ∞ has non-zero paramodular vectors. The eigenform
condition implies that the local representations πi,p and πj,p are isomorphic for almost all p and
all i, j. By Conjecture 4.4 the representations πi are all isomorphic. But then, by Conjecture 4.3,
there can be only one i; in other words, π is irreducible. This implies part i) of Conjecture 4.1.

Now let F1 and F2 be as in ii) of Conjecture 4.1. We just proved that F1 and F2 generate irreducible
cuspidal automorphic representations π1 = ⊗π1,p and π2 = ⊗π2,p. The condition of F1 and F2

having the same Hecke eigenvalues almost everywhere translates into π1,p
∼= π2,p for almost all p.

By Conjecture 4.4 it follows that π1
∼= π2, and then π1 = π2 as spaces of automorphic forms by

Conjecture 4.3. We shall write π for π1 = π2 and πp for π1,p = π2,p. Let Vp be a model of πp. Let
v∞ ∈ V∞ be a lowest weight vector (generating the scalar minimal K–type). For p <∞ let vp ∈ Vp
be the essentially unique local newform according to Theorem 4.2 i). Let F be the function on the
upper half plane corresponding to the vector ⊗vp ∈ ⊗πp. Then F is a paramodular cusp form of
weight k. Since vp is the local newform at every place, the level of F is at least as “good” as the
level of F1, in the sense that F ∈ Sk(N) with N |N1.

Part ii) of Theorem 4.2 says that every paramodular vector in Vp can be obtained from the local
newform vp by repeatedly applying the local level raising operators and taking linear combinations.
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Since local and global level raising operators are compatible, this implies that F1 = ΘF , where Θ
is an element of the algebra A introduced in the previous section. This element Θ cannot be in the
ideal I generated by θp, θ′p, ηp for all primes p, since otherwise F1 would be an oldform. Hence Θ is
a scalar and F1 is a multiple of F . The same argument applies to F2, proving that F1 and F2 are
multiplies of each other and that N1 = N2 = N .

5 Saito–Kurokawa liftings

Examples of modular forms for the paramodular group are obtained by the Saito–Kurokawa lifting.
Let k be a positive integer. Let f ∈ S2k−2(Γ0(N)) be an elliptic cusp form, which we also assume
to be a newform. We also assume that the sign in the functional equation of L(s, f) is −1. Then f
corresponds to a cuspidal Jacobi form f̃ ∈ Jk,N via the Skoruppa–Zagier lifting; see [SZ]. From f̃
we can construct a Siegel modular form F ∈ Sk(N) via Gritsenko’s “arithmetical lifting”, which
is a generalization of the Maaß construction; see [Gr]. The map f 7→ F extends to an injective
linear map

SK : Snew,−
2k−2 (Γ0(N)) −→ Sk(N).

Here, the “−” indicates the subspace of cusp forms for which the sign in the functional equation is
−1. We propose an alternative group theoretic construction of this lifting which gives a little bit
more information.

5.1 Theorem. Let k and N be positive integers. Let f ∈ Snew
2k−2(Γ0(N)) be an elliptic cuspidal

newform, assumed to be an eigenform for almost all Hecke operators. We assume that the sign
in the functional equation of L(s, f) is −1. Then there exists a paramodular Siegel cusp form
F ∈ Snew

k (N) such that the incomplete spin L–function of F is given by

LS(s, F ) = LS(s, f)ZS(s− 1/2)ZS(s+ 1/2). (19)

Such an F is unique up to scalars.

We give an outline of the proof, whose details will appear elsewhere. Let π be the cuspidal au-
tomorphic representation of GL(2,A) associated to the modular form f (it is generated by an
adelic function on GL(2,A) constructed from f by a similar formula as in (4)). Our hypoth-
esis on L(s, f) assures that there exists a Saito–Kurokawa lifting to GSp(4), meaning a cuspi-
dal automorphic representation Π on G(A) with trivial central character such that LS(s,Π) =
LS(s, π)ZS(s− 1/2)ZS(s+1/2). The construction of Π is carried out in [Sch3] and further investi-
gated in [Sch4]. In fact, there may exist a whole (finite) packet of such Π, but exactly one element
in the packet is distinguished in the sense that each of its local components Πp (p < ∞) contains
non-zero paramodular vectors. Hence we can extract a Siegel modular form F ∈ Sk(N ′) from Π
for some level N ′ (the archimedean component Π∞ is such that F is holomorphic of weight k).
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Further analysis of the Πp shows that they have a unique paramodular vector at the “right” level
and at no better level; see Theorem 5.2 below for more details. In other words, we can actually
extract an F ∈ Sk(N) from Π, which is unique up to scalars, and since the local representations
contain no paramodular vectors at lower levels, this F must be a newform.

Theorem 5.1 can be reformulated by saying that there is a Hecke-equivariant injection

SK : Snew,−
2k−2 (Γ0(N)) −→ Snew

k (N). (20)

Here “Hecke-equivariant” has the following meaning. Let T (p) be the usual Hecke operator on
S2k−2(Γ0(N)). Let TS(p) and T ′S(p) be the generators for the local Hecke algebra Hp for Siegel
modular forms as in [EZ], §6. We define a homomorphism ι of local Hecke algebras by

ι(TS(p)) = TJ(p) + pk−1 + pk−2,

ι(T ′S(p)) = (pk−1 + pk−2)TJ(p) + 2p2k−3 + p2k−4.

Then the map (20) is Hecke-equivariant in the sense that T (SK(f)) = SK(ι(T )f) for all elements
T ∈ Hp, for any p - N .

Local liftings

We now present the local ingredient to Theorem 5.1 in more detail. Let F be a p–adic field, and
let π be an irreducible, admissible, infinite-dimensional representation of GL(2, F ) with trivial cen-
tral character. In [Sch3], a local Saito–Kurokawa lifting SK(π) has been attached to π. It can
be constructed as the unique irreducible quotient of the induced representation ν1/2π o ν−1/2; we
refer to [ST] for the notation and the fact that this induced representation has exactly two irre-
ducible constituents. The representation SK(π) thus constructed is a non-generic, non-tempered,
irreducible, admissible representation of PGSp(4, F ). One can prove the following result, which is
a local version of the Saito–Kurokawa lifting. The symbol K(pn) stands for the local paramodular
group; see (1).

5.2 Theorem. Let (π, V ) be an irreducible, admissible, infinite-dimensional representation of
PGL(2, F ), and let (SK(π),W ) be the local Saito–Kurokawa lifting of π as explained above. Let
V (n) ⊂ V be the subspace of Γ0(pn)–invariant vectors, and let W (n) ⊂ W be the subspace of
K(pn) invariant vectors. Let n0 be the minimal n such that V (n) 6= 0.

i) The integer n0 is also the minimal n such that W (n) 6= 0.

ii) dim(W (n0)) = 1.

iii) For any n ≥ n0, we have

W (n) =
⊕
d,e≥0

d+2e=n−n0

θdηeW (n0),
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where θ and η are the local level raising operators defined earlier.

iv) All paramodular vectors w ∈ W (n) are Atkin–Lehner eigenvectors with the same eigenvalue
(as some w0 ∈W (n0)).

Thus, the local lifting Π has a unique newform at the same level as π. This explains the existence
and part of the uniqueness assertion in Theorem 5.1 (one also needs to know global multiplicity
one in the Saito–Kurokawa space), and the assertion that the lifting is a newform.

Extension to oldforms

We would like to extend the map (20) to include oldforms. However, part iii) of Theorem 5.2
shows that the structure of oldforms in a local representation (π, V ) and in its lifting (SK(π),W ) is
different. While in V the dimensions of the spaces V (n), n ≥ n0, grow (by [Cas]) like 1, 2, 3, . . ., the
dimensions of the spaces W (n) grow like 1, 1, 2, 2, 3, 3, . . . (see Table 1 in the appendix, where we can
observe these dimensions in the representations IIb, Vb and VIc, which are local Saito–Kurokawa
liftings). This suggests that only a subspace of the space of oldforms in V can be matched to the
oldforms in W . Part iv) of Theorem 5.2 provides the clue that this subspace should consist of
the newforms and all oldforms with the same Atkin–Lehner eigenvalue as the newform. This local
situation is compatible with the work of Skoruppa and Zagier, which shows that the map (20)
can be extended to the “certain space” in the title of [SZ]; see further below for a precise definition.

We shall first describe the local analogue of the “certain space” more precisely. As above let
(π, V ) be an irreducible, admissible, infinite-dimensional representation of PGL(2, F ), where F is
a non-archimedean local field, and let V (n) ⊂ V be the subspace of vectors fixed under the local
congruence subgroup Γ0(pn). Let n0 be the minimal n such that V (n) 6= 0. Then, by Casselman’s
theory, dim(V (n)) = n− n0 + 1 for n ≥ n0. The local Atkin–Lehner involution

un =
[

1
$n

]
($ a uniformizer)

splits V (n) into ±1 eigenspaces V (n)±. The eigenvalue ε at the minimal level n0 coincides with the
value ε(1/2, π) of the ε–factor at 1/2. Locally, the “certain space” is ⊕∞n=n0

V (n)ε, i.e., it consists of
the newform and all those oldforms with the same Atkin–Lehner eigenvalue as the newform. These
oldforms are obtained by repeated application of the operators

α : V (n) −→ V (n+ 1), v 7−→ v + π(
[
$−1

1

]
)v (21)

and

β : V (n) −→ V (n+ 2), v 7−→ π(
[
$−1

1

]
)v (22)
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to V (n0) (it is immediately verified that α and β commute with Atkin–Lehner involutions). One
can check that α2v is not a multiple of βv, and more generally that

V (n)ε =
⊕
d,e≥0

d+2e=n−n0

αdβeV (n0). (23)

We see that the “certain space” can be matched exactly with the complete space of paramodular
vectors in (SK(π),W ), whose structure is given in Theorem 5.2 iii). More precisely, we can define
a local Saito–Kurokawa map

SK :
∞⊕

n=n0

V (n)ε −→
∞⊕

n=n0

W (n) (24)

by mapping a non-zero vector v ∈ V (n0) to a non-zero vector w ∈ W (n0) and requiring that
SK ◦ α = θ ◦ SK and SK ◦ β = η ◦ SK. Then SK is a linear isomorphism. We note that SK is not
canonically defined: Not only do we have a freedom in the normalization of the newforms and the
operators, but we could also replace the operator β by a linear combination of β and α2.

The global version of the “certain space” is defined as follows. On the spaces Sk(Γ0(N)) (ellip-
tic modular forms) we have, for any prime number p, the Atkin–Lehner involutions up, defined
analogously as above in the degree 2 case. If p - N , we let up be the identity. We are looking
for level raising operators Sk(Γ0(N)) → Sk(Γ0(Np)) commuting with Atkin–Lehner involutions;
here the prime number p may or may not divide N . The two natural operators f(z) 7→ f(z) and
f(z) 7→ f(pz) do not have this property, but a computation shows that a certain linear combination
has. More precisely, put

αp : Sk(Γ0(N)) −→ Sk(Γ0(Np)), f(z) 7−→ f(z) + pk/2f(pz). (25)

Then αp ◦ up = up ◦ αp. Furthermore, another computation shows that f 7→ f(pz) does commute
with Atkin–Lehner involutions if we consider f(pz) an element of Sk(Γ0(Np2)). We therefore define

βp : Sk(Γ0(N)) −→ Sk(Γ0(Np2)), f(z) 7−→ pk/2f(pz). (26)

Then βp ◦ up = up ◦ βp. If Φ is the adelic function on GL(2,A) corresponding to f , then the adelic
functions corresponding to αpf and βpf are

g 7−→ Φ(g) + Φ
(
g

[
p−1

1

])
and g 7−→ Φ

(
g

[
p−1

1

])
,

respectively. In other words, αp and βp are compatible with the local operators (21) and (22). We
shall now define the “certain space”, which will be denoted by Sk(Γ0(N)). Let

Snew
k (Γ0) :=

∞⊕
N=1

Snew
k (Γ0(N)), Sk(Γ0) :=

∞⊕
N=1

Sk(Γ0(N)).
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We consider the operators αp and βp as endomorphisms of Sk(Γ0). They obviously commute, and
operators for different p also commute. Hence we get a commutative algebra B of endomorphisms
of Sk(Γ0) generated by all these operators for all prime numbers p. We define the “certain space”
as the image of Snew

k (Γ0) under B,

Sk(Γ0) := B Snew
k (Γ0), Sk(Γ0(N)) := Sk(Γ0) ∩ Sk(Γ0(N)).

Hence Sk(Γ0(N)) consists of all the newforms of level N plus those oldforms that can be obtained
by repeated application of αp and βp operators to newforms of lower levels. Those oldforms have the
same Atkin–Lehner eigenvalues as the newforms from which they come. If in the above definitions
we allow only newforms with a certain sign in the functional equation of their L–function, we obtain
the spaces S±k (Γ0(N))

From the local linear independence (23) we derive the global result that

Sk(Γ0(N)) =
⊕
M |N

⊕
d,e≥1

de2=N/M

αdβeS
new
k (Γ0(M)). (27)

Here, αd =
∏
i α

νi
pi

if d =
∏
i p
νi
i , and similarly for βe. Restricting to newforms with a fixed sign in

the functional equation, we get

S±k (Γ0(N)) =
⊕
M |N

⊕
d,e≥1

de2=N/M

αdβeS
new,±
k (Γ0(M)). (28)

Now for each M we have the maps (20) from Snew,−
2k−2 (Γ0(M)) to Snew

k (M). We put them all together
to define a linear map

Snew,−
2k−2 (Γ0) −→ Snew

k (Γpara)

The direct sum decomposition (28) shows that this linear map can be extended to a linear map

SK : S−2k−2(Γ0) −→ Sk(Γpara)

in such a way that

SK ◦ αp = θp ◦ SK and SK ◦ βp = ηp ◦ SK.

The image of SK is called the Maaß space and denoted by Sk(Γpara). Restricting to a fixed level
we get a Saito–Kurokawa lifting SK from S−2k−2(Γ0(N)) to Sk(N) = Sk(Γpara) ∩ Sk(N). Since SK
is compatible with the local isomorphisms (24), we obtain the following result.

5.3 Theorem. The Saito–Kurokawa lifting (20) can be extended to a Hecke–equivariant isomor-
phism

SK : S−2k−2(Γ0(N)) −→ Sk(N).
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Characterizations of the Maaß space

The following version of the Ramanujan conjecture is believed to be true, but currently there is no
published proof.

5.4 Conjecture. (Ramanujan Conjecture for GSp(4)) Let π = ⊗πv be a cuspidal automor-
phic representation of GSp(4,AF ), where F is any number field. If π is not a CAP representation,
then each πv is tempered.

The Ramanujan conjecture has the following relevance for the characterization of the Maaß space.
We note that in the classical case the characterization of eigenforms in the Maaß space by their
spin L–functions having poles was obtained by Oda [Oda] and Evdokimov [Ev].

5.5 Theorem. Write F ∈ Sk(N) as a sum F =
∑

i Fi, where each Fi ∈ Sk(N) is a Hecke eigenform
for almost all Hecke operators. Then the following statements are equivalent.

i) F is an element of the Maaß space Sk(N).

ii) Each of the incomplete spin L–functions L(s, Fi) has a pole at s = 3/2.

iii) Each Fi corresponds to a vector in an irreducible cuspidal automorphic representation of
PGSp(4,AQ) that is CAP with respect to the Siegel parabolic subgroup.

Each of these conditions implies the following.

iv) θpF = θ′pF for each prime number p.

If the Ramanujan conjecture holds, then the following condition implies the others.

v) There exists a prime number p such that θpF is a multiple of θ′pF .

Sketch of proof: i) ⇒ ii) follows from the shape of the L–function in (19). ii) ⇒ iii) follows from
the characterization of CAP automorphic representations in [PS] and local results showing that a)
global Saito–Kurokawa packets contain at most one element that is paramodular at every finite
place, and b) Borel–CAP representations do not have paramodular vectors at every finite place.
iii) ⇒ i) follows from the fact that the local lifting (24) is onto, meaning SK exhausts the space of
paramodular vectors.

i) ⇒ iv): Let Π = ⊗Πp be an irreducible constituent of the space of cusp forms on GSp(4,AQ)
generated by the adelic function Φ attached to F . Then, by the group theoretic construction of
Saito–Kurokawa liftings indicated after Theorem 5.1, each Πp for p < ∞ is of the form SK(π) for
an irreducible, admissible, infinite-dimensional representations π of PGL(2,Qp). One can prove by
local computations that θ− θ′ annihilates the space of paramodular vectors in SK(π). This implies
iv) since the local and global operators are compatible.
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v) ⇒ i): Let Π = ⊗Πp be as in the previous paragraph. The hypothesis implies that for some p the
local representation Πp contains a paramodular vector that is annihilated by θ− θ′. One can prove
by local methods that Πp must be one of the representations in the following list (see the table in
the appendix):

• An unramified twist of the trivial representation.

• A representation of type IVb.

• A representation of type Vd or VId.

• A representation of the form SK(π) as in Theorem 5.2.

It is known that one-dimensional representations do not occur in global cusp forms. Representations
of type IVb do also not occur in global cusp forms because they are not unitarizable. Represen-
tations of type Vd and VId are not tempered. Hence, if Πp is one of these representations, and if
the Ramanujan conjecture is true, then Π must be a CAP representation. One can give a complete
description of the local components of CAP representations, and this description shows that Π
must be CAP with respect to B, the minimal parabolic subgroup, or Q, the Klingen parabolic
subgroup. But one can further show that in such CAP representations there is always at least
one place for which the local component has no paramodular vectors (it is essential here that the
ground field is Q; the statement is wrong for other number fields). This proves that Πp cannot be
of type Vd or VId, and must consequently be a local Saito–Kurokawa representation of the form
SK(π). These representations are also non-tempered, so that by the Ramanujan conjecture Π must
be a CAP representation. By the above mentioned explicit description of CAP representation, Π
must indeed be CAP with respect to P , the Siegel parabolic subgroup. In other words, Π lies in
the Saito–Kurokawa space.

In view of the definition (14) of the θ′p operator we see that, at least if the Ramanujan conjecture
is true, the Maaß space can be characterized as the subspace of Sk(N) where θp commutes with
Atkin–Lehner involutions. For a classical Saito–Kurokawa lifting F ∈ Sk(1) (full modular group)
the condition v) in Theorem 5.5 means

Vpfm = pk−1Upfm/p + fmp for m ≥ 1,

where we understand fm/p = 0 for p - m; see (11) and (17). In terms of the Fourier expansion
F (τ, z, τ ′) =

∑
n,r,m a(n, r,m)e2πi(nτ+rz+mτ

′) this translates into the conditions

a(np, r,m) + pk−1a
(n
p
,
r

p
,m

)
= pk−1a

(
n,
r

p
,
m

p

)
+ a(n, r,mp) for n, r,m ∈ Z, (29)

with the convention that a(α, β, γ) = 0 if (α, β, γ) /∈ Z3. The Maaß space for the full modular
group is defined by the more general relations

a(n, r,m) =
∑

d|(n,r,m)

dk−1a
(nm
d2

,
r

d
, 1

)
for n, r,m ∈ Z; (30)
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see [Ma] or [EZ] §6. To see that the Maaß relations (30) are indeed more general, substitute (30)
into (29). Conversely, for m a power of p, the condition (30) is implied by (29). Theorem 5.5 says
that if the Ramanujan conjecture holds, then (29) and (30) are actually equivalent:

5.6 Corollary. Suppose that the Ramanujan conjecture 5.4 holds. Let F ∈ Sk(1) be a cusp form
for Sp(4,Z) with Fourier expansion F (τ, z, τ ′) =

∑
n,r,m a(n, r,m)e2πi(nτ+rz+mτ

′). Then F is in the
Maaß space if and only if there is a prime number p such that (29) holds.

We stress that the prime number p in this corollary is completely arbitrary.

6 Two theorems

As before, let Sk(N) be the space of cusp forms of weight k with respect to the paramodular group
Γpara(N). In this section we shall elaborate on the representation theoretic meaning of the following
two theorems.

6.1 Theorem. There are no paramodular cusp forms of weight 1: The spaces S1(N) are zero for
any N .

6.2 Theorem. The operators θp and θ′p from Sk(N) to Sk(Np) are injective for any N and any
prime p.

Both theorems are quickly proved using results on Jacobi forms. Theorem 6.1 follows immediately
from the Fourier–Jacobi expansion and a result of Skoruppa stating that J1,m = 0 for any m; see
Theorem 5.7 in [EZ]. For Theorem 6.2, note that in view of the definition (14) it is enough to prove
the result for θp. By (11), the θp operator is compatible with the operator Vp on Jacobi forms. But it
is a consequence of the results of Skoruppa and Zagier [SZ] that the operator Vp : Jcusp

k,m → Jcusp
k,mp

on cuspidal Jacobi forms is injective (see Lemma 1.10 of [Sch2] for a corresponding local statement).
Theorem 6.2 follows.

We shall now reformulate Theorem 6.1 in terms of representations. For representations of G(F ),
where F is a local field, we shall employ the notation of [ST] (this paper treats non-archimedean
representations, but the notation can also be used for F = R). The symbol ν stands for the
normalized absolute value, which in the case F = R is the usual absolute value | |. Let ξ0 be
a character of F ∗ of order 2. Then, by [ST] Lemma ..., the induced representation νξ0 × ξ0 o
ν−1/2 decomposes into four irreducible components. We are interested in the Langlands quotient
L(νξ0, ξ0 o ν−1/2). In the archimedean case F = R, where ξ0 is the sign character, it can be
shown that L(νξ0, ξ0 o ν−1/2) has a minimal K–type of weight (1, 1). In other words, this is
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the archimedean representation underlying Siegel modular forms of weight one. Theorem 6.1 is
therefore equivalent to the archimedean part of the following statement.

6.3 Corollary. Let F ∈ Sk(N), and let Φ be the adelic function corresponding to F . Let π = ⊕πi
be the cuspidal automorphic representation of PGSp(4,A) generated by Φ, and let πi = ⊗πi,p be
the tensor product decomposition of the irreducible component πi of π. Then no πi,p (p ≤ ∞) is
equal to L(νξ0, ξ0 o ν−1/2), where ξ0 is a local character of order 2.

Let us now focus on the non-archimedean content of Corollary 6.3. The appendix contains a table
with the complete list of Iwahori–spherical representations of GSp(4, F ) and the dimensions of
their spaces of fixed vectors under the paramodular groups K(pn) for any level pn. We see that
the dimensions of these spaces are always growing with growing n, except for the representation
L(νξ0, ξ0 o ν−1/2) of type Vd; here ξ0 is the unique non-trivial unramified quadratic character of
F ∗. For this representation the dimensions are 1, 0, 1, 0, . . . (one can show that if ξ0 is ramified,
then Vd contains no paramodular vectors at all). Hence the corresponding local statement to
Theorem 6.2 is not always true: In the Vd type representations, the local θ and θ′ operators from
V (n) to V (n + 1) are zero (here V (n) is the space of vectors fixed under K(pn)). It follows that
these representations cannot occur as local components in automorphic representations generated
by elements of Sk(N), which is exactly the statement of Corollary 6.3 for p <∞.

We mention the following local result, which says that the representations of type Vd are the only
counterexamples to the injectivity of θ and θ′.

6.4 Theorem. Let F be a p–adic field. Let (π, V ) be an irreducible, admissible representation
of GSp(4, F ) with trivial central character. Let V (n) be the space of vectors fixed under the
paramodular group K(pn) as in (1). Assume that π is not isomorphic to a representation L(νξ0, ξ0o
ν−1/2σ) of type Vd, where ξ0 is the unramified character of order 2. Then the operators θ and θ′

from V (n) to V (n+ 1) are injective, for any n.

This theorem is analogous to Lemma 1.10 of [Sch2], which says that certain Weil representations are
the only counterexamples to the injectivity of a local V operator on representations of the Jacobi
group. The two results are actually related since these Weil representations are Fourier–Jacobi
models of the Vd type representations. Theorem 6.4 says that Vd type representations are the
only local representations excluded by Theorem 6.2 (in automorphic representations generated by
elements of Sk(N)). Therefore Theorem 6.2 is the exact non-archimedean analogue of Theorem
6.1.

Note that Corollary 6.3 is a Ramanujan type result: The representations of type Vd are non-
tempered, and the corollary says that they do not occur in certain cuspidal automorphic repre-
sentations of PGSp(4,A). There are actually cuspidal automorphic representations of this group,
namely certain CAP representations, that contain
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• L(νξ0, ξ0 o ν−1/2) as archimedean component, and moreover

• L(νξ0, ξ0 o ν−1/2) at almost every place.

But one can show that there is always at least one non-archimedean place where the local repre-
sentation has no paramodular vectors. In other words, cusp forms of weight 1 do exist, but not for
the paramodular group.
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Appendix: Paramodular vectors in Iwahori–spherical representations

The following table lists the dimensions of the spaces of paramodular vectors of any level for each
irreducible, admissible representation of PGSp(4, F ) which admits a nonzero vector fixed by the
Iwahori subgroup I.

The first column. By [Bo], these representations are exactly the irreducible subquotients of the
representations of PGSp(4, F ) induced from unramified quasi-characters of the Borel subgroup.
The basic reference on representations of GSp(4, F ) induced from a quasi-character of the Borel
subgroup is section 3 of [ST], and we will use the notation of that paper. Thus, St is the Steinberg
representation, 1 is the trivial representation, and ν = | · |. It is also useful to consult section 4.1
of [T-B]. Let χ1, χ2 and σ be unramified quasi-characters of F× with χ1χ2σ

2 = 1, so that the
representation χ1 × χ2 o σ of GSp(4, F ) induced from the quasi-character χ1 ⊗ χ2 ⊗ σ has trivial
central character. Of course, χ1 × χ2 o σ may be reducible. It turns out that by section 3 of [ST],
there are six types of χ1×χ2 oσ such that every irreducible admissible representation of GSp(4, F )
with trivial central character which contains a nonzero vector fixed by I is an irreducible subquotient
of a representative of one of these six types, and that no two representatives of two different types
share a common irreducible subquotient. The first column gives the name of the type. In the table
we choose a representative for a type with the notation as below, and in subsequent columns we
give information about the irreducible subquotients of that representative. The types are described
as follows. Type I: These are the χ1 × χ2 o σ where χ1, χ2 and σ are unramified quasi-characters
of F× such that χ1χ2σ

2 = 1 and χ1 × χ2 o σ is irreducible. See Lemma 3.2 of [ST]. Type II:
These are the ν1/2χ× ν−1/2χo σ where χ and σ are unramified quasi-characters of F× such that
χ2σ2 = 1. See Lemmas 3.3 and 3.7 of [ST]. Type III: These are the χ× ν o ν−1/2σ where χ and σ
are unramified quasi-characters of F× such that χσ2 = 1. See Lemmas 3.4 and 3.9 of [ST]. Type
IV: These are the ν2×νoν−3/2σ where σ is an unramified quasi-character of F× such that σ2 = 1.
See Lemma 3.5 of [ST]. Type V: These are the νξ0 × ξ0 o ν−1/2σ where ξ0 and σ are unramified
quasi-characters of F× such that ξ0 has order two and σ2 = 1. See Lemma 3.6 of [ST]. Type VI:
These are the ν× 1o ν−1/2σ where σ is an unramified quasi-character of F× such that σ2 = 1. See
Lemma 3.8 of [ST].

The second column Choose a type as in the first column, and choose a representative χ1×χ2 oσ
of that type. Then χ1×χ2 oσ admits a finite number of irreducible subquotients, and this number
depends only on the type of χ1 × χ2 o σ. We index the irreducible subquotients by lower case
Roman letters. The letter “a” is reserved for the generic irreducible subquotient.

The representation column. This column lists the irreducible subquotients of the representative
of the type of the first column. We use the specific notation as in the discussion of the first column.

The N and ε(1/2, π) columns. Suppose π is an entry of the third column, and let ϕ be the
L-parameter associated to π by [KL]. We define N and ε(1/2, π) by the equation ε(s, ϕ, ψ,dxψ) =
ε(1/2, π)q−N(s−1/2).
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The K(0), K(1), K(2), K(3) and K(n) columns. The numbers in the columns give the dimensions
of the spaces of K(pn) fixed vectors for n = 0, 1, 2, 3 and arbitrary n ≥ 0. Note that to save space we
have abbreviated K(pn) by K(n). The signs under the numbers in the K(0), K(1), K(2) and K(3)
columns indicate how these spaces of K(pn) fixed vectors split under the action of the Atkin-Lehner
operator π(un). The signs are correct if in the type II case, where the central character of π is
χ2σ2, the character χσ is trivial, and in the type IV, V, and IV cases, where the central character
of π is σ2, the character σ is trivial. If these assumptions are not met, then the plus and minus
signs must be interchanged to obtain the correct signs.
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representation N ε(1/2, π) K(0) K(1) K(2) K(3) K(n)

I χ1 × χ2 o σ (irreducible) 0 1 1
+

2
+−

4
+++−

6
+++
−−−

[ (n+2)2

4

]
a χStGL(2) o σ 1 −(σχ)($) 0 1

−
2
+−

4
++−−

[ (n+1)2

4

]
II

b χ1GL(2) o σ 0 1 1
+

1
+

2
++

2
++

[
n+2

2

]
a χo σStGSp(2) 2 1 0 0 1

+

2
+−

[
n2

4

]
III

b χo σ1GSp(2) 0 1 1
+

2
+−

3
++−

4
++−−

n+ 1

a σStGSp(4) 3 −σ($) 0 0 0 1
−

[ (n−1)2

4

]
b L((ν2, ν−1σStGSp(2))) 2 1 0 0 1

+

1
+

[
n
2

]
IV

c L((ν3/2StGL(2), ν
−3/2σ)) 1 −σ($) 0 1

−
2
+−

3
+−−

n

d σ1GSp(4) 0 1 1
+

1
+

1
+

1
+

1

a δ([ξ0, νξ0], ν−1/2σ) 2 −1 0 0 1
−

2
+−

[
n2

4

]
b L((ν1/2ξ0StGL(2), ν

−1/2σ)) 1 σ($) 0 1
+

1
+

2
++

[
n+1

2

]
V

c L((ν1/2ξ0StGL(2), ξ0ν
−1/2σ)) 1 −σ($) 0 1

−
1
+

2
−−

[
n+1

2

]
d L((νξ0, ξ0 o ν−1/2σ)) 0 1 1

+

0 1
+

0 1+(−1)n

2

a τ(S, ν−1/2σ) 2 1 0 0 1
+

2
+−

[
n2

4

]
b τ(T, ν−1/2σ) 2 1 0 0 0 0 0

VI
c L((ν1/2StGL(2), ν

−1/2σ)) 1 −σ($) 0 1
−

1
−

2
−−

[
n+1

2

]
d L((ν,1F ∗ o ν−1/2σ)) 0 1 1

+

1
+

2
++

2
++

[
n+2

2

]
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