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1 Introduction

In this paper we shall construct cuspidal Siegel modular forms F ∈ Sk(Γ0(N)) of degree 2 with
the following property. There exists a prime number p such that, if

F (τ, z, τ ′) =

∞∑
m=0

fm(τ, z)e2πimτ ′

is the Fourier-Jacobi expansion of F , then fm = 0 whenever p|m. We call such modular forms
p-hypercuspidal of degree 1 (p-hypercuspidal of degree l would mean fm = 0 whenever pl|m).
The existence of such modular forms is not obvious. For example, one can show that if p - N
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or p divides N only once, then such modular forms do not exist. One can also show that cusp
forms with respect to paramodular groups, as defined in [RS1], are not p-hypercuspidal; this
follows from the analogous local statement, Proposition 3.4.2 in [RS2].

The examples we shall give are for Γ0(p
2M) with p - M . More precisely, we shall show that

every cusp form F ∈ Sk(Γ0(M)) gives rise to a p-hypercuspidal modular form F̃ ∈ Sk(Γ0(p
2M))

in a way that preserves Hecke-eigenvalues at all good places. See Theorem 3.11 for the precise
statement.

A central role in our argument will be played by a certain linear operator µp on the space
Sk(Γ0(N)). This endomorphism is only defined if p2|N , but assuming this is the case, µp has
rather nice properties. Amongst others, µp is diagonalizable and admits only the four possible
eigenvalues p(p+ 1), p, 2p and 0. Consequently, we obtain a direct sum decomposition

Sk(Γ0(N)) = Sk(Γ0(N))p(p+1) ⊕ Sk(Γ0(N))p ⊕ Sk(Γ0(N))2p ⊕ Sk(Γ0(N))0, (1)

where Sk(Γ0(N))i denotes the i-eigenspace of µp. In Sect. 3.3 we shall give several characteriza-
tions of the eigenspaces, one of them in terms of Fourier coefficients. The decomposition (1) is
not new, but is a special case of the direct sum decomposition obtained in [Sa], §3, via “twisting
operators”. See also [Yo].

In this work we are particularly interested in Sk(Γ0(N))0, the kernel of µp, since it turns out
that this space consists precisely of the p-hypercuspidal modular forms of degree 1. Thus, given
F ∈ Sk(Γ0(M)) and p - M , our goal is to find an F̃ ∈ Sk(Γ0(p

2M)) with µpF̃ = 0. Our strategy
will be to translate modular forms into automorphic representations and solve the analogous
local problem.

Thus let L be a p-adic field with ring of integers o and maximal ideal p of o, and let (π, V ) be
an irreducible, admissible representation of GSp(4, L). Since we are considering modular forms
of haupttype only, we shall assume that π has trivial central character. We denote by Si(pn),
n ≥ 0, the local analogues of the Hecke subgroups Γ0(N). The local analogues of the spaces
Sk(Γ0(N)) are the finite-dimensional spaces V0(n) = {v ∈ V : π(g)v = v for all g ∈ Si(pn)}.
Provided that n ≥ 2 we shall define an endomorphism µ : V0(n) → V0(n) which is analogous,
and in fact compatible, with the global endomorphism µp of Sk(Γ0(N)). This endomorphism is
diagonalizable and admits only q(q+1), q, 2q and 0 as its eigenvalues, where q = #o/p. Hence,
we get a similar decomposition as in (1) for the spaces V0(n). Since Si(p0) = GSp(4, o), the
representation π is spherical if and only if V0(0) 6= 0. In this case dimV0(0) = 1, and the local
analogue of our global problem consists in finding a vector ṽ ∈ V0(2) such that µṽ = 0.

For this purpose we shall determine the dimensions of the µ-eigenspaces in V0(2) for each Iwahori-
spherical, irreducible, admissible representation (π, V ) of GSp(4, L) with trivial central character
and each of the four possible eigenvalues. It turns out that this space can be at most 12-
dimensional, and in this case the dimensions of the eigenspaces, in the order q(q+ 1), q, 2q and
0, are 4, 4, 3 and 1. Our method to determine these dimensions consists in finding an explicit
basis for V0(2) and computing the resulting 12 × 12 matrix of the µ operator. Hence, at least
for this type of representation (type I representations in the terminology of [RS2]), the kernel of
µ on V0(2) is indeed non-trivial, and is in fact one-dimensional.
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More calculations and some additional arguments give the dimensions of the µ-eigenspaces at
level p2 for each of the Iwahori-spherical representations. The results are summarized in Table 1;
see also Theorem 2.11. It turns out that not every spherical representation admits a non-trivial
µ-kernel at level p2; those of type IIIb, IVd and VId do not. However, by the main result of [PS],
these representations are not relevant for holomorphic Siegel modular forms. More precisely, the
only spherical representations that can occur in an automorphic representation generated by an
element of Sk(Γ0(N)), k ≥ 3, are of type I or IIb. As in the type I case, spherical representations
of type IIb also have a one-dimensional kernel of µ at level p2. Hence, in each relevant spherical
representation we can find an essentially unique vector ṽ in the kernel of µ at level p2. If π comes
from a modular form F , then, replacing the spherical vector by ṽ, we obtain the desired cusp
form F̃ for which µpF̃ = 0. Since we are moving to another vector within the same automorphic
representation, Hecke eigenvalues at primes away from p are not affected.

This work is divided into two parts. Part one is the local part, in which we shall define the local
version of the µ operator, prove its basic properties, and carry out the required calculations
at level p2 in Iwahori-spherical representations. Part two contains the global theory. We shall
define the µp operator on the spaces Sk(Γ0(N)), prove the existence of the decomposition (1),
and finally apply our local results to the construction of hypercuspidal Siegel modular forms.
We caution that we shall use two different, but of course isomorphic, versions of the symplectic
group; in part one we find it convenient to work with the “symmetric” version, while in part
two we shall switch to the “official” version.

2 Local theory

All through this section let L be a non-archimedean local field of characteristic zero. Let o be
the ring of integers of F and p the maximal ideal of o. We fix a generator $ of p. We shall work
with the algebraic L-group

GSp(4) = {g ∈ GL(4) : tgJg = λ(g)J for some scalar λ(g)}, J =


1

1
−1

−1

 . (2)

We shall sometimes abbreviate GSp(4) by G. The homomorphism λ : GSp(4) → GL(1) is
called the multiplier homomorphism. Its kernel is the symplectic group Sp(4). Note that this is
the “symmetric” version of GSp(4), which allows for the following choices of standard parabolic
subgroups. As a standard minimal parabolic subgroup we choose

B =


∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗

∗

 .

The Siegel parabolic subgroup P and the Kingen parabolic subgroup Q are defined as

P =


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗
∗ ∗

 , Q =


∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗

 .
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(In the global part of this paper we shall switch to the “official” version of GSp(4), where J is

replaced by

[
12

−12

]
.) The Siegel congruence subgroup of level pn is

Si(pn) = GSp(4, o) ∩


o o o o
o o o o
pn pn o o
pn pn o o

 . (3)

If (π, V ) is a smooth representation of GSp(4, F ), we denote by V0(n) the space of vectors v ∈ V
for which π(g)v = v for all g ∈ Si(pn).

2.1 The endomorphism µ of V0(n)

Let (π, V ) be a smooth representation of GSp(4, L) for which the center acts trivially. For n ≥ 0
let V0(n) be the subspace of V consisting of Si(pn) invariant vectors. For v ∈ V0(n) consider the
summation

v′ =
∑
z∈o/p

π(


1 z$−1

1
1

1

)v. (4)

It is easily checked that v′ is invariant under all elements of the form
o o o p−1

p o o o
pn pn o o
pn pn p o

 , (5)

provided that n ≥ 2. Hence, if we restore the GL(2, o) invariance on the Siegel Levi, we obtain
a new element of V0(n). In other words, for n ≥ 2 there is an endomorphism µ : V0(n) → V0(n)
given by

µ(v) =
∑

A∈SL(2,o)/[ o o
p o ]

∑
z∈o/p

π(

[
A

A′

]
1 z$−1

1
1

1

)v. (6)

An explicit formula is

µ(v) =
∑

x,z∈o/p

π(


1 x

1
1 −x

1



1

1 z$−1

1
1

)v + ∑
z∈o/p

π(


1 z$−1

1
1

1

)v. (7)

Alternatively,

µ(v) =
∑

x,z∈o/p

π(


1 xz$−1 x2z$−1

1 z$−1 xz$−1

1
1

)v + ∑
z∈o/p

π(


1 z$−1

1
1

1

)v. (8)
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In particular, µ has a formula given completely in terms of the unipotent radical of the Siegel
parabolic subgroup. In addition to µ we introduce a simple level raising operator β : V0(n) →
V0(n+ 1), given by

βv = π(


1

1
$

$

)v (v ∈ V0(n)). (9)

Trivially, β is injective. The following result shows, amongst other things, that the image of β
can be characterized in terms of eigenvalues of the µ operator.

2.1 Proposition. Let (π, V ) be an admissible representation of GSp(4, L) for which the center
acts trivially. Let n ≥ 2. Consider the endomorphism µ of V0(n) defined above.

i) µ is diagonalizable.

ii) The only possible eigenvalues of µ on V0(n) are 0, q, 2q and q(q + 1).

iii) For v ∈ V0(n) we have µv = q(q + 1)v if and only if v ∈ β(V0(n − 1)). Consequently, at
the minimal Siegel level, the only possible eigenvalues of µ are 0, q and 2q.

iv) Let v ∈ V0(n). If µv = qv, then

∑
y∈o/p

π(


1 y$−1

1
1

1

)v 6= 0, but
∑

x,y∈o/p

π(


1 y$−1

1 x$−1

1
1

)v = 0.

v) Let v ∈ V0(n). If µv = 2qv, then

∑
y∈o/p

π(


1 y$−1

1
1

1

)v 6= 0, but
∑

x,y∈o/p

π(


1 x$−1 y$−1

1 x$−1

1
1

)v = 0.

vi) Let v ∈ V0(n). We have µv = 0 if and only if

∑
y∈o/p

π(


1 y$−1

1
1

1

)v = 0.

Proof: i) Let 〈 , 〉 be an inner product on V invariant under the compact subgroup
1 p−1 p−1

1 p−1 p−1

1
1

 .
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It is immediate from (8) that 〈µv, v′〉 = 〈v, µv′〉 for v, v′ ∈ V0(n). Hence, µ is self-adjoint and
therefore diagonalizable.

ii), iii) It is obvious that µv = q(q + 1)v for v ∈ β(V0(n − 1)). We will now prove ii) and the
other direction of iii). Assume that v ∈ V0(n) and µ(v) = cv for some c ∈ C. By (8), this means

cv =
∑

x,z∈o/p

π(


1 xz$−1 x2z$−1

1 z$−1 xz$−1

1
1

)v + ∑
z∈o/p

π(


1 z$−1

1
1

1

)v.
Let v′ be defined as in (4). Multiplying the above equation with

1 y$−1

1
1

1


and summing over y ∈ o/p we obtain

cv′ =
∑

x,z∈o/p

π(


1 xz$−1 x2z$−1

1 z$−1 xz$−1

1
1

)v′ + qv′.

Hence

(c− q)v′ =
∑

x,z∈o/p

π(


1 xz$−1

1 z$−1 xz$−1

1
1

)v′

= qv′ +
∑

z∈(o/p)×

∑
x∈o/p

π(


1 xz$−1

1 z$−1 xz$−1

1
1

)v′,
and therefore

(c− 2q)v′ =
∑

z∈(o/p)×

∑
x∈o/p

π(


1 x$−1

1 z$−1 x$−1

1
1

)v′. (10)

The vector v′ already has the invariance (5). If c 6= 2q, then we conclude from (10) that v′ is
invariant under 

o o p−1 p−1

p o o p−1

pn pn o o
pn pn p o

 .
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In this case we get from (10)

(c− 2q)v′ = q
∑

z∈(o/p)×
π(


1

1 z$−1

1
1

)v′,
from which it follows that

(c− q)v′ = q
∑
z∈o/p

π(


1

1 z$−1

1
1

)v′. (11)

If in addition c 6= q, we conclude that v′ is invariant under
o o p−1 p−1

p o p−1 p−1

pn pn o o
pn pn p o

 . (12)

From the definition (6) we see that µv is invariant under
o o p−1 p−1

o o p−1 p−1

pn pn o o
pn pn o o

 .

Consequently µv = βv1 for some v1 ∈ V0(n − 1). Hence cv = βv1. If c 6= 0 it follows that
v ∈ β(V0(n− 1)), and therefore µv = q(q + 1)v. This proves ii) and iii).

iv) follows from (11).

v) Let µv = 2qv. From (10) we get

∑
x,z∈o/p

π(


1 x$−1

1 z$−1 x$−1

1
1

)v′ = ∑
x∈o/p

π(


1 x$−1

1 x$−1

1
1

)v′.
If we define

v′′ =
∑
x∈o/p

π(


1 x$−1

1 x$−1

1
1

)v′ = ∑
x,y∈o/p

π(


1 x$−1 y$−1

1 x$−1

1
1

)v,
this can be rewritten as

∑
z∈o/p

π(


1

1 z$−1

1
1

)v′′ = v′′. (13)
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Hence v′′ is invariant under 
1

1 p−1

1
1

 .

But then (13) becomes qv′′ = v′′, which implies v′′ = 0. This is the assertion.

vi) We have to show that µv = 0 if and only if v′ = 0. It is clear from (6) that v′ = 0 implies
µv = 0. Assume conversely that µv = 0. As above we conclude that v′ is invariant under all
elements of the form (12). Hence

q2v′ =
∑

x,y∈o/p

π(


1 y$−1

1 x$−1 y$−1

1
1

)v′

=
∑

x,y,z∈o/p

π(


1 y$−1 z$−1

1 x$−1 y$−1

1
1

)v

=
∑

x,y,z∈o/p

π(


$−1

$−1

1
1



1 y z

1 x y
1

1



$

$
1

1

)v

= β
∑

x,y,z∈o/p

π(


1 y z

1 x y
1

1



$

$
1

1

)v.
It follows that v′ ∈ V0(n+1), and actually, since v′ has the invariance (12), that v′ ∈ V0(n). All
we need, however, is the invariance of v′ under the GL(2, o) block in the Siegel Levi. It implies,
by (6), that µv = (q + 1)v′. But µv = 0 by assumption, hence v′ = 0.

Our goal in the following sections is to compute the dimensions of the eigenspaces of µ on V0(2)
for the Iwahori-spherical representations of GSp(4, L).

2.2 Double coset representatives

We start by computing representatives for certain double coset spaces. This will already give
the dimension of V0(2) for a number of Iwahori-spherical representations.

2.2 Lemma. For any n ≥ 1, the following is a complete and minimal system of representatives
for GSp(4, o)/Si(pn) (here the residue characteristic of L can be arbitrary).

1
1

y z 1
x y 1

 , x, y, z ∈ o/pn, x, y, z ≡ 0 mod p, (14)
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s2


1

1
y z 1
x y 1

 , x, y, z ∈ o/pn, x, y ≡ 0 mod p, (15)

s1s2


1

1
y z 1
x y 1

 , x, y, z ∈ o/pn, x ≡ 0 mod p, (16)

s2s1s2


1

1
y z 1
x y 1

 , x, y, z ∈ o/pn. (17)

In particular, #GSp(4, o)/Si(pn) = q3n−3(q + 1)(q2 + 1).

Proof: See [RS2], Lemma 5.1.1.

2.3 Lemma. i) A complete and minimal system of representatives for the double cosets
B(L)\G(L)/Si(p2) is given by the following 12 elements.

1, s2, s1s2, s2s1s2,
1

1
$ 1

1

 ,


1

1
1

$ 1

 ,


1

1
$ 1

$ 1

 ,


1

1
$ 1

$ 1

 ,


1
$ 1

1
−$ 1

 s2,


1

1
1

$ 1

 s2,


1

1
$ 1

1

 s1s2, X,

where

X =


1

1
u$ 1

$ 1

 , u ∈ o× \ o×2,

if the residue characteristic of L is odd, and

X =


1

1
$ $ 1

$ 1


if the residue characteristic of L is even.

ii) A complete and minimal system of representatives for the double cosets P (L)\G(L)/Si(p2)
is given by the following 7 elements.

1, s2, s2s1s2,
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
1

1
$ 1

1

 ,


1

1
$ 1

$ 1

 ,


1

1
1

$ 1

 s2, X,

where

X =


1

1
−u$ 1

$ 1

 , u ∈ o× \ o×2,

if the residue characteristic of L is odd, and

X =


1

1
$ 1

$ 1


if the residue characteristic of L is even.

iii) A complete and minimal system of representatives for the double cosets Q(L)\G(L)/Si(p2)
is given by the following 4 elements.

1, s1s2,


1

1
1

$ 1

 ,


1

1
$ 1

$ 1

 .

Proof: We first indicate how to check that no two of the 12 elements listed define the same
double coset in B(L)\G(L)/Si(p2). As an example, let us show that

g1 =


1

1
$ 1

1

 and g2 =


1

1
$ 1

$ 1


define different double cosets. Thus assume there is an equality bg1k = g2 with b ∈ B(F ) and
k ∈ Si(p2). This implies b ∈ B(o). Conjugating this equality with diag($,$, 1, 1), all elements
remain in GSp(4, o). Reducing the new identity mod p, we obtain a matrix identity over the
residue field of the form

∗ ∗
∗

∗ ∗
∗



1

1
1 1

1



∗ ∗
∗ ∗

∗ ∗
∗ ∗

 =


1

1
1 1

1 1

 .

It is easy to see that this is impossible. Other cases are treated similarly, with only slight
modifications. — We now show that every double coset in B(L)\G(L)/Si(p2) is represented by
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one of the 12 elements listed. By Lemma 2.2, the cosets GSp(4, o)/Si(p2) are represented by
1

1
y$ z$ 1
x$ y$ 1

 , x, y, z ∈ o/p, (18)

s2


1

1
y$ z 1
x$ y$ 1

 , x, y ∈ o/p, z ∈ o/p2, (19)

s1s2


1

1
y z 1
x$ y 1

 , x ∈ o/p, y, z ∈ o/p2, (20)

s2s1s2


1

1
y z 1
x y 1

 , x, y, z ∈ o/p2. (21)

Elements of type (21) are obviously all equivalent to s2s1s2 in B(L)\G(L)/Si(p2). Elements of
type (20) are equivalent to

s1s2


1

1
1

x$ 1

 =


1

1
x$ 1

1

 s1s2,

and hence, since we can conjugate by diagonal matrices with units on the diagonal, to one of
the 12 elements listed. Elements of type (19) are equivalent to

s2


1

1
y$ 1
x$ y$ 1

 =


1
y$ 1

1
x$ −y$ 1

 s2,

and therefore, after conjugation with suitable unit diagonal matrices, to s2 or
1
$ 1

1
−$ 1

 s2 or


1

1
1

$ 1

 s2 or


1
$ 1

1
$ −$ 1

 s2

The last two matrices are actually equivalent because of the relation
1 1

1 $ 1
1

1



1

1
1

$ 1

 s2


1 1

1
1 −1

1

 =


1
$ 1

1
$ −$ 1

 s2. (22)
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Hence, each matrix of type (19) is equivalent to one of the 12 elements listed. Finally, we have
to deal with matrices of type (18). First assume that x = 0. In this case, a matrix of type (18)
is equivalent to

1 or


1

1
$ 1

1

 or


1

1
$ 1

$ 1

 or


1

1
$ $ 1

$ 1

 .

If the residue characteristic is odd, and only then, are the last two matrices equivalent, because
of the identity

1 −1
2
1

1 1
2
1



1

1
$ 1

$ 1



1 1

2
1

1 −1
2
1

 =


1

1
$ $ 1

$ 1

 . (23)

This shows that a matrix of type (18) with x = 0 is equivalent to one of the 12 elements listed.
Now consider a matrix of type (18) with x /∈ p. After a conjugation with a suitable unit diagonal
matrix we can bring it into the form

1
1

$ z$ 1
$ $ 1

 or


1

1
z$ 1

$ 1


with z ∈ o/p. Since

1 1
1

1 −1
1



1

1
$ z$ 1
$ $ 1



1 −1

1
1 1

1

 =


1

1
(z − 1)$ 1

$ 1

 ,

we may actually assume it is of the second form. If z = 0, this matrix is in our list. Assume
that z is a unit. Conjugation with diagonal matrices allows us to multiply z by an element of
o×2. If the residue characteristic of L is odd, then (o× : o×2) = 2, and we may assume z = 1
or z = u. Hence the proof is complete in this case. If the residue characteristic is even, then
o× = o×2(1 + p). The identity

1

1 −b
1+bz$

1
1



1

1
z$ 1

1



1

1 + bz$ b
1+bz$

1
1+bz$

1

 =


1

1
z$(1 + bz$) 1

1


shows that we are allowed to multiply z by elements of 1 + p. We may therefore assume z = 1,
and the proof is complete.

ii) Using the same method as in i), it is easy to check that no two of the 7 elements listed define
the same double coset in P (L)\G(L)/Si(p2). It remains to show that each of the 12 elements in



2 LOCAL THEORY 13

i) defines the same double coset in P (L)\G(L)/Si(p2) as one of the 7 elements in ii). Since we
are now able to multiply from the left by s1, this is easy to see for most of the elements in i);
in the following we shall only treat the non-obvious cases. If the residue characteristic of L is
even, then the identity

1
1 1

1
−1 1



1

1
$ $ 1

$ 1




1
−1 1

1
1 1

 =


1

1
$ 1

−$ 1


shows that the element X in i) is equivalent to the element X in ii); see the end of the proof of
i). Now assume that the residue characteristic of L is odd. First assume that −1 ∈ o×2. Let

v ∈ o× with v2 = −1, and let A =

[
v 1

−v
2

1
2

]
. We have A tA =

[
1

1

]
, from which it follows that

[
A′

A

]
1

1
$ 1

$ 1

[
A′−1

A−1

]
=


1

1
$ 1

$ 1

 .

Now assume that −1 /∈ o×2, and let A =

[
1 1

−1
2

1
2

]
. Then A

[
−1

1

]
tA =

[
1

1

]
, from which it

follows that [
A′

A

]
1

1
−$ 1

$ 1

[
A′−1

A−1

]
=


1

1
$ 1

$ 1

 .

In any case we conclude that the three matrices
1

1
$ 1

$ 1

 ,


1

1
$ 1

$ 1

 ,


1

1
u$ 1

$ 1


reduce to the two matrices

1
1

$ 1
$ 1

 ,


1

1
−u$ 1

$ 1

 .

iii) Knowing the result of i), this is an easy exercise.

As an immediate consequence of this result we obtain the dimension of the space V0(2) of Si(p
2)

invariant vectors in certain induced representations. Let χ1, χ2 and σ be unramified characters
of L×, and let V be the standard space of the induced representation χ1×χ2oσ. Then Lemma
2.3 i) implies that dimV0(2) = 12. Similarly, let χ and σ be unramified characters of L×, and
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let V be the standard space of the Siegel induced representation χ1GL(2) o σ. Then Lemma
2.3 ii) implies that dimV0(2) = 7. Finally, if V is the standard space of the Klingen induced
representation χ o σ1GL(2), then Lemma 2.3 iii) implies that dimV0(2) = 4. These results will
be refined in Proposition 2.7 below.

2.3 The matrix of µ at level p2

In this section we shall compute the eigenvalues of µ on the space V0(2) for the Iwahori-spherical
representations V mentioned at the end of the previous section.

Let us denote the elements from Lemma 2.3 i) by g1, . . . , g12. Now consider an induced rep-
resentation χ1 × χ2 o σ, where χ1, χ2, σ are unramified characters of L×. Functions f in the
standard space V of this induced representation have the transformation property

f(


a ∗ ∗ ∗

b ∗ ∗
cb−1 ∗

ca−1

 g) = |a2b||c|−3/2χ1(a)χ2(b)σ(c)f(g).

For i = 1, . . . , 12 let fi be the unique Si(p2)-invariant function in V such that fi(gi) = 1 and
fi(gj) = 0 for j 6= i. Then f1, . . . , f12 are a basis of V0(2).

2.4 Lemma. Let notations be as above. If the residue characteristic of L is odd and −1 /∈ o×2,
then the matrix of the endomorphism µ of V0(2) with respect to the basis f1, . . . , f12 is given by

q(q+1) 0 0 0 0 0 0 0 0 0 0 0

0 2q 0 0 (q−1)β 0 0 0 0 0 0 0

0 0 2q 0 0 (1−q−1)α 0 0 0 0 0 0

0 0 0 q+1 0 0 0 0 0 (1−q−1)α (1−q−1)β 0

0 q2β−1 0 0 q2 0 0 0 0 0 0 0

0 0 q2α−1 0 0 q2 0 0 q(q−1)β−1 0 0 0

0 0 0 0 0 0 2q
(q−1)2

2
0 q(q−1)β−1 0

(q−1)2

2

0 0 0 0 0 0 q−1 q2−1
2

0 q2β−1 q2α−1 (q−1)2

2

0 0 0 0 0 (q−1)β 0 0 2q 0 0 0

0 0 0 q2α−1 0 0 (1−q−1)β q−1
2

β 0 2q−1 0 q−3+2q−1

2
β

0 0 0 qβ−1 0 0 0 1−q−1

2
α 0 0 2q−1 1−q−1

2
α

0 0 0 0 0 0 q−1
(q−1)2

2
0 q(q−2)β−1 q2α−1 q2+3

2


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If the residue characteristic of L is odd and −1 ∈ o×2, then the matrix is given by

q(q+1) 0 0 0 0 0 0 0 0 0 0 0

0 2q 0 0 (q−1)β 0 0 0 0 0 0 0

0 0 2q 0 0 (1−q−1)α 0 0 0 0 0 0

0 0 0 q+1 0 0 0 0 0 (1−q−1)α (1−q−1)β 0

0 q2β−1 0 0 q2 0 0 0 0 0 0 0

0 0 q2α−1 0 0 q2 0 0 q(q−1)β−1 0 0 0

0 0 0 0 0 0 2q
(q−1)2

2
0 q(q−1)β−1 0

(q−1)2

2

0 0 0 0 0 0 q−1 q2+3
2

0 q(q−2)β−1 q2α−1 (q−1)2

2

0 0 0 0 0 (q−1)β 0 0 2q 0 0 0

0 0 0 q2α−1 0 0 (1−q−1)β q−3+2q−1

2
β 0 2q−1 0 q−1

2
β

0 0 0 qβ−1 0 0 0 1−q−1

2
α 0 0 2q−1 1−q−1

2
α

0 0 0 0 0 0 q−1
(q−1)2

2
0 q2β−1 q2α−1 q2−1

2


If the residue characteristic of L is even, then the matrix is given by

q(q+1) 0 0 0 0 0 0 0 0 0 0 0

0 2q 0 0 (q−1)β 0 0 0 0 0 0 0

0 0 2q 0 0 (1−q−1)α 0 0 0 0 0 0

0 0 0 q+1 0 0 0 0 0 (1−q−1)α (1−q−1)β 0

0 q2β−1 0 0 q2 0 0 0 0 0 0 0

0 0 q2α−1 0 0 q2 0 0 q(q−1)β−1 0 0 0

0 0 0 0 0 0 q+1 q(q−1) 0 0 0 q−1

0 0 0 0 0 0 1 q2−q+1 0 q(q−1)β−1 q2α−1 q−2

0 0 0 0 0 (q−1)β 0 0 2q 0 0 0

0 0 0 q2α−1 0 0 0 q−1(q−1)2β 0 2q−1 0 (1−q−1)β

0 0 0 qβ−1 0 0 0 (1−q−1)α 0 0 2q−1 0

0 0 0 0 0 0 1 q(q−2) 0 q2β−1 0 2q−1


Here, we abbreviated α = χ1($) and β = χ2($).

The proof consists of a long calculation, which we postpone until Sect. 2.5.

Next we treat the case of a Siegel induced representation χ1GL(2) o σ, where χ and σ are
unramified characters of L×. Let g1, . . . , g7 be the representatives for the double coset space
P (L)\G(L)/Si(p2) listed in Lemma 2.3 ii). Let fi be the unique Si(p2)-invariant function in the
standard space V of χ1GL(2) o σ with fi(gi) = 1 and fi(gj) = 0 for j 6= i. Then f1, . . . , f7 are a
basis of V0(2).

2.5 Lemma. Let notations be as above. The matrix of the endomorphism µ of V0(2) with
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respect to the basis f1, . . . , f7 is given by

q(q + 1) 0 0 0 0 0 0

0 2q 0 q−1
q1/2

α 0 0 0

0 0 q + 1 0 0 q2−1
q3/2

α 0

0 q5/2α−1 0 q2 0 0 0

0 0 0 0 (q+1)2

2 q3/2(q − 1)α−1 (q−1)2

2

0 0 q3/2α−1 0 q−1
2q1/2

α 2q − 1 q−1
2q1/2

α

0 0 0 0 q2−1
2 q3/2(q + 1)α−1 q2−1

2


if the residue characteristic of L is odd (independent of −1 being a square or not), and by

q(q + 1) 0 0 0 0 0 0

0 2q 0 q−1
q1/2

α 0 0 0

0 0 q + 1 0 0 q2−1
q3/2

α 0

0 q5/2α−1 0 q2 0 0 0

0 0 0 0 q + 1 0 q2 − 1

0 0 q3/2α−1 0 0 2q − 1 q−1
q1/2

α

0 0 0 0 1 q5/2α−1 q2 − 1


if the residue characteristic of L is even. In both cases we abbreviated α = χ($).

Proof: The calculations are similar, but easier, as in Lemma 2.4. We omit the details except
for one useful matrix identity:

1 1
2

1 −1
2

−1 1
2

1 1
2



1

1
$ 1

$ 1

 =


1

1
−$ 1

$ 1



1 1

2
1 −1

2
−1 1

2
1 1

2

 .

Alternatively, the result can be deduced from Lemma 2.4, observing that χ1GL(2)oσ ↪→ χν−1/2×
χν1/2 o σ.

Finally, we treat the case of a Klingen induced representation χ o σ1GL(2), where χ and σ are
unramified characters of L×. Let g1, . . . , g4 be the representatives for the double coset space
P (L)\G(L)/Si(p2) listed in Lemma 2.3 ii). Let fi be the unique Si(p2)-invariant function in the
standard space V of χ1GL(2) o σ with fi(gi) = 1 and fi(gj) = 0 for j 6= i. Then f1, . . . , f4 are a
basis of V0(2).
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2.6 Lemma. Let notations be as above. The matrix of the endomorphism µ of V0(2) with
respect to the basis f1, . . . , f4 is given by

q(q + 1) 0 0 0

0 2q (1− q−1)χ($) 0

0 q2χ($−1) q2 q − 1

0 0 q(q − 1) 2q


(independent of the residue characteristic).

Proof: Easy calculation.

2.7 Proposition. The following table lists, for certain induced representations V , the dimen-
sion of the space V0(2) of Si(p

2) invariant vectors, together with the dimensions of the eigenspaces
of the operator µ on V0(2) with respect to the four possible eigenvalues q(q + 1), q, 2q and 0.

V V0(2) q(q + 1) q 2q 0

χ1 × χ2 o σ 12 4 4 3 1

χ1GL(2) o σ 7 3 2 1 1

χo σ1GL(2) 4 2 1 1 0

Here, χ1, χ2, χ and σ are unramified characters of L×. (This result is independent of the residue
characteristic of L.)

Proof: This follows by determining the eigenvalues of the matrices computed in the previous
lemmas.

2.4 Eigenvalues of µ at level p2 for Iwahori-spherical representations

Let (π, V ) be a smooth representation of GSp(4, L) for which the center acts trivially. In Sect.
3.2 we introduced the simple level raising operator V0(n) → V0(n+ 1). We define an additional
level raising operator α2 : V0(n) → V0(n+ 2) by

α2v =
∑

A∈SL(2,o)/[ o o
p o ]

π(

[
A

A′

]
$−1

1
1

$

)v (v ∈ V0(n), n ≥ 0). (24)

Observe that α2 skips one level. An explicit formula is

α2v = π(


$−1

1
1

$

)v + ∑
x∈o/p


1 x

1
1 −x

1



1

$−1

$
1

)v. (25)
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2.8 Lemma. Let (π, V ) be an unramified representation of type V or VI. Let v0 ∈ V be a
non-zero GSp(4, o) invariant vector. Then the four vectors

v0, βv0, β2v0, α2v0 (26)

are linearly independent. In particular, dim(V0(2)) ≥ 4.

Proof: Let ξ be an unramified quadratic character of L×, which may be trivial. Let V be the
standard space of the representation ν−1/2ξ1GL(2)o ξν1/2σ−1. Then L(νξ, ξo ν−1/2σ), which is
of type Vd if ξ is non-trivial and of type VId if ξ is trivial, can be realized as a subrepresentation
of V . Hence, it is enough to show that the four vectors (26) are linearly independent when
v0 ∈ V is the spherical vector. Each one of these four vectors lies in V0(2). Let f1, . . . , f7 be the
basis of V0(2) defined before Lemma 2.5. Straightforward calculations show that in this basis
the vectors (26) are given by the columns of the matrix

1 qξ($)σ($) q2 q(q + 1)ξ($)
1 σ($) 1 (q + 1)ξ($)
1 q−1ξ($)σ($) q−2 (q−1 + 1)ξ($)
1 qξ($)σ($) qξ($) q(1 + ξ($))
1 qξ($)σ($) 1 2qξ($) + q − 1
1 σ($) q−1ξ($) 1 + ξ($)
1 qξ($)σ($) 1 q + 1


if the residue characteristic of L is odd, and by the columns of the matrix

1 qξ($)σ($) q2 q(q + 1)ξ($)
1 σ($) 1 (q + 1)ξ($)
1 q−1ξ($)σ($) q−2 (q−1 + 1)ξ($)
1 qξ($)σ($) qξ($) q(1 + ξ($))
1 qξ($)σ($) 1 q(q + 1)ξ($)
1 σ($) q−1ξ($) 1 + ξ($)
1 qξ($)σ($) 1 q(1 + ξ($))


if the residue characteristic of L is even (only the (5, 4) and the (7, 4) coefficient are different).
In any case this matrix has rank 4. This proves the lemma.

2.9 Lemma. Let V be the standard space of an induced representation χ1 o χ2 o σ with
unramified characters χ1, χ2 and σ such that χ1χ2σ

2 = 1. Let α = χ1($) and β = χ2($).
Then the matrix of the Atkin-Lehner involution u2 on the 12-dimensional space V0(2) with
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respect to the basis f1, . . . , f12 introduced before Lemma 2.4 is given by

0 0 0 q3α−1β−1 0 0 0 0 0 0 0 0
0 0 qα−1β 0 0 0 0 0 0 0 0 0
0 q−1αβ−1 0 0 0 0 0 0 0 0 0 0

q−3αβ 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 q2α−1 0
0 0 0 0 0 0 0 0 0 qβ−1 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 q−1β 0 0 0 0 0 0
0 0 0 0 q−2α 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1



.

Let V be the standard space of an induced representation χ1GL(2)oσ with unramified characters
χ and σ such that χ2σ2 = 1. Let α = χ($). Then the matrix of the Atkin-Lehner involution u2
on the 7-dimensional space V0(2) with respect to the basis f1, . . . , f7 introduced before Lemma
2.5 is given by 

0 0 q3α−2 0 0 0 0
0 1 0 0 0 0 0

q−3α2 0 0 0 0 0 0

0 0 0 0 0 q3/2α−1 0
0 0 0 0 1 0 0

0 0 0 q−3/2α 0 0 0
0 0 0 0 0 0 1


.

Let V be the standard space of an induced representation χoσ1GSp(2) with unramified characters
χ and σ such that χσ2 = 1. Let α = χ($). Then the matrix of the Atkin-Lehner involution u2
on the 4-dimensional space V0(2) with respect to the basis f1, . . . , f4 introduced before Lemma
2.6 is given by 

0 q2α−1 0 0
q−2α 0 0 0
0 0 1 0
0 0 0 1

 .

(These results are independent of the residue characteristic.)

Proof: These are easy calculations.

2.10 Lemma. Let (π, V ) be an Iwahori-spherical, irreducible, admissible representation of
GSp(4, L) with trivial central character. Then the space V0(2) consists not exclusively of q-
eigenvectors, and also not exclusively of 2q-eigenvectors, for the µ operator.

Proof: We can realize V as a subspace of the standard space W of an induced representation
of the form χ1 × χ2 o σ with χ1, χ2 and σ unramified characters of L×. Let i = q or i = 2q.
Let V0(2)i be the i-eigenspace for µ on V0(2), and let W0(2)i be the i-eigenspace for µ on W0(2).
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Evidently, V0(2)i ⊂ W0(2)i. Now assume that V0(2) = V0(2)i. Since V0(2) is Atkin–Lehner
invariant, this implies that there exists a w ∈ W0(2)i which is an Atkin–Lehner eigenvector.
Then w ∈ W0(2)i∩u2W0(2)i. But a calculation using the matrices from Lemma 2.4 and Lemma
2.9 shows that

W0(2)i ∩ u2W0(2)i = 0.

This contradiction proves the lemma.

2.11 Theorem. Table 1 below lists for n = 0, 1, 2 the dimensions of the spaces V0(n) of vec-
tors invariant under the groups Si(pn) for each Iwahori-spherical, irreducible, admissible rep-
resentation (π, V ) of GSp(4, L) with trivial central character. The signs under each dimension
indicate Atkin–Lehner eigenvalues.1 In addition, the last four columns show the dimensions of
the eigenspaces of the µ operator on the space V0(2) for each of the four possible eigenvalues
q(q + 1), q, 2q and 0.

Proof: The dimensions and Atkin-Lehner eigenvalues for V0(0) and V0(1) have been recorded
in [Sch1], Sect. 1.3, and [RS2], Table A.15. In this proof we shall be concerned with the V0(2)
column. The dimensions for groups I, IIb and IIIb follows immediately from Proposition 2.7.
The dimensions of the Atkin–Lehner eigenspaces for these representations can be determined
from the matrices occurring in Lemma 2.9. The entries for IIa and IIIa are then obtained by
subtracting the numbers for IIb resp. IIIb from the numbers for the full induced representation
in which they occur. Similarly, the µ-eigenvalues for group IV are easily obtained from the way
the full induced representation ν2×νoν−3/2σ decomposes (see [RS2], (2.9)), since the numbers
for the trivial representation are obvious.

By Lemma 2.8, the dimension of V0(2) for the representation of type VId is at least 4. On the
other hand, VIc+VId = 1L× oσ1GSp(2), and the dimensions for this induced representation are
given in Proposition 2.7. This explains the VIc and the VId row. The rest of group VI follows
from the way the full induced representation ν × 1L× o ν−1/2σ decomposes; see [RS2], (2.11).

In the rest of this proof we shall explain the dimensions and eigenvalues at level p2 for group
V. First of all, the multiplicity of the eigenvalue q(q + 1) in each case equals the dimension
of V0(1), by Proposition 2.1 iii). Second, observe that the dimensions and eigenvalues for Vb
and Vc coincide, since these two representations differ by an unramified, quadratic twist. Since
the kernel of µ on the Si(p2)-space of the full induced representation is only one-dimensional
by Proposition 2.7, it follows that Vb and Vc must have a zero entry in the last column.
But Vb + Vd = ν1/2ξ1GL(2) o ξν−1/2σ, and the eigenvalues for this degenerate principal series
representation are given in Proposition 2.7. It follows that Vd has a 1 in the last column, from
which it follows in turn that Va has a 0 in the last column.

Next, we shall prove that the total Si(p2) dimension for Vb is ≥ 3 by realizing Vb as a subrepre-
sentation of ν1/2ξ1GL(2) o ξν−1/2 (we may assume σ = 1) and applying enough linear operators

1The Atkin–Lehner eigenvalues listed in this table are correct if one assumes that

• in group II, where the central character is χ2σ2, the character χσ is trivial.

• in groups IV, V and VI, where the central character is σ2, the character σ itself is trivial.

If these assumptions are not met, then one has to interchange the plus and minus signs in the V0(1) column.
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Table 1: Eigenvalues of µ on level p2 vectors in Iwahori-spherical representations

V0(2)
representation V0(0) V0(1) V0(2)

q(q+1) q 2q 0

I χ1 × χ2 o σ (irreducible) 1
+

4
++−−

12
+: 8
−: 4

4 4 3 1

a χStGL(2) o σ 0 1
−

5
+++
−−

1 2 2 0

II
b χ1GL(2) o σ 1

+

3
++−

7
++++
+−−

3 2 1 1

a χo σStGSp(2) 0 2
+−

8
++++
+−−−

2 3 2 1

III
b χo σ1GSp(2) 1

+

2
+−

4
+++−

2 1 1 0

a σStGSp(4) 0 0 2
+−

0 1 1 0

b L(ν2, ν−1σStGSp(2)) 0 2
+−

6
++++
−−

2 2 1 1

IV
c L(ν3/2StGL(2), ν

−3/2σ) 0 1
−

3
++−

1 1 1 0

d σ1GSp(4) 1
+

1
+

1
+

1 0 0 0

a δ([ξ, νξ], ν−1/2σ) 0 0 2
+−

0 1 1 0

b L(ν1/2ξStGL(2), ν
−1/2σ) 0 1

+

3
++−

1 1 1 0

V
c L(ν1/2ξStGL(2), ξν

−1/2σ) 0 1
−

3
++−

1 1 1 0

d L(νξ, ξ o ν−1/2σ) 1
+

2
+−

4
+++−

2 1 0 1

a τ(S, ν−1/2σ) 0 1
−

5
+++
−−

1 2 2 0

b τ(T, ν−1/2σ) 0 1
+

3
++−

1 1 0 1

VI
c L(ν1/2StGL(2), ν

−1/2σ) 0 0 0 0 0 0 0

d L(ν, 1F ∗ o ν−1/2σ) 1
+

2
+−

4
+++−

2 1 1 0
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to the essentially unique Si(p)-invariant vector in the subspace realizing Vb. The only problem
is to identify this Si(p)-invariant vector h̃, but this problem was solved in [Sch2]. In the basis
f1, . . . f7 introduced before Lemma 2.5 it is given by the transpose of

(−q2(q + 1), (1− q)q, q + 1,−q2(q + 1),−q2(q + 1), (1− q)q,−q2(q + 1)).

A computation using Lemmas 2.5 and 2.9 shows that h̃, µh̃ and u2h̃ are linearly independent.
Hence the Si(p2) dimensions for Vb and Vc are at least three. Since ν1/2ξ1GL(2) o ξν−1/2 =
Vb+Vd, it follows from Proposition 2.7 that they are exactly three, and that the dimension for
VId is 4. Again from Proposition 2.7 it follows that the Si(p2) dimension for Va is 2.

Combining the latter fact with Lemma 2.10 shows that Va has one q-eigenvector and one 2q-
eigenvector. Hence we are done with Va. The representation Vb cannot have 2 linearly inde-
pendent q-eigenvectors, since the same would then be true for Vc, and the total q-dimensions
in group V would exceed 4. For the same reason Vb cannot have two linearly independent
2q-eigenvectors. It follows that the q-dimensions and the 2q-dimensions for Vb,c are 1. This
finally implies that Vd has one q-eigenvector but no 2q-eigenvector.

The Atkin-Lehner eigenvalues for group V and level p2 are now easily computed in the induced
models, since, as explained above, the spaces of Si(p2)-vectors in appropriate subrepresentations
are explicitly known (at least for Vb,c,d; the Atkin-Lehner eigenvalues for Va are then obtained
by subtracting).

2.5 Proof of Lemma 2.4

2.12 Lemma. Using the notations explained before Lemma 2.4, we have, for any f in V0(2),
the following formulas in the case of odd residue characteristic.

i)

∑
z∈(o/p)×

f(


1
−z 1

1
$ z 1



1

1
−z−1$ 1

1

)

= f(g7) +
q − 1

2
f(g8) +

q − 1

2
f(g12)− f(


1

1
−$ 1

$ 1

).
ii)

∑
z∈o/p

f(


1

1
$−1 $−1 1
z$−1 $−1 1

 s2s1s2) = q−3χ1($)χ2($)f(g7) + q−2χ1($)f(g10)

+ q−3χ1($)χ2($)
q − 1

2
(f(g8) + f(g12))− q−3χ1($)χ2($)f(


1

1
−$ 1

$ 1

).
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In the case of even residue characteristic, one has to replace g12 and the matrix occurring on
the right side of each formula by g8, and replace g7 by g12.

Proof: We shall restrict to the case of odd residue characteristic; the even case is treated
similarly.

i) For z /∈ 1 + p we use the identity
1
−z 1

1
$ z 1



1

1
−z−1$ 1

1



=
1

1− z


1 1

1− z
1 −1

1− z



1

1
−$z−1 1

$ 1




1 −1
−z 1

1 1
z 1

 ,

while for z = 1 we use the identity
1
−1 1

1
$ 1 1



1

1
−$ 1

1

 =


1 −1

2
1

−1 −1
2

−1



1

1
$ 1

$ 1




1
2

1
2

−1 1
−1

2
1
2

−1 −1

 .

We obtain

∑
z∈(o/p)×

f(


1
−z 1

1
$ z 1



1

1
−z−1$ 1

1

)

= f(


1

1
$ 1

$ 1

) + ∑
z∈(o/p)×
z /∈1+p

f(


1

1
−$z−1 1

$ 1

)

= f(g7) +
∑

z∈(o/p)×
f(


1

1
−$z−1 1

$ 1

)− f(


1

1
−$ 1

$ 1

)

= f(g7) +
q − 1

2
f(g8) +

q − 1

2
f(g12)− f(


1

1
−$ 1

$ 1

).
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ii) Using the identities
1

1
$−1 $−1 1

$−1 1

 s2s1s2 =


$ $ −1

−$ 1
−$−1 $−1

$−1



1

1
$ $ 1

$ 1



1

−1
−1

1


(27)

and (23), the term for z = 0 equals q−3χ1($)χ2($)f(g7). Using the identity
1

1
$−1 $−1 1
$−1 $−1 1

 s2s1s2 =


−$ −1 1

1
−1 $−1

$−1



1

1
1

$ 1

 s2


−1

−1 1
1

1 1

 ,

the term for z = 1 equals q−2χ1($)f(g10). For z /∈ p and z /∈ 1 + p we use the identity
1

1
$−1 $−1 1
z$−1 $−1 1

 s2s1s2

=


$ −$ 1

z−1 −1

$z −z
z−1

−$−1 −$−1

−$−1z



1

1
(z − 1)$ 1

$ 1




z−1

1
z−1

−z−1

z−1

z−1 − 1
−1 −z−1

 ,

and the assertion follows easily.

Proof of Lemma 2.4. The (i, j)-entry of the matrix of µ on V0(2) is given by

(µfj)(gi) =
∑

x,z∈o/p

fj(gi


1 x

1
1 −x

1



1

1 z$−1

1
1

) + ∑
z∈o/p

fj(gi


1 z$−1

1
1

1

).
The of these numbers is easy to compute. For example, it is immediate that

(µf)(1) = q(q + 1)f(1)

for any f , giving the first row of the matrix. The main tool for the remaining cases is the matrix
identity [

1
x 1

]
=

[
1 x−1

1

][
−x−1

−x

][
1

−1

][
1 x−1

1

]
. (28)

The most difficult cases are (µf)(g8) and (µf)(g12), which are treated similarly. As an example,
we shall compute (µf)(g8) = A+B, where

A =
∑

x,z∈o/p

f(


1

1
$ 1

$ 1



1 x

1
1 −x

1



1

1 z$−1

1
1

)
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and

B =
∑
z∈o/p

f(


1

1
$ 1

$ 1



1 z$−1

1
1

1

).
We shall carry out the calculations only in the case of odd residue characteristic; the even case
requires slight modifications, but uses the same matrix identities. We begin by calculating B,
which is easier. If z /∈ −1 + p, then

1
1
$ 1

$ 1



1 z$−1

1
1

1

 =


1

z+1 z$−1

1
1

z + 1




1
1
$ 1

$
z+1 1

 ,

while if z = −1, then
1

1
$ 1

$ 1



1 z$−1

1
1

1

 =


−$−1 −1

1
1

−$



1

1
$ 1

1

 s1s2s1.

It follows easily from these identities that

B = q2χ1($)−1f(g11) +
q − 1

2
f(g8) +

q − 1

2
f(g12).

Next we compute

A =
∑

x,z∈o/p

f(


1

1
$x $x2 1
$ $x 1



1

1
$ 1

1



1

1 z$−1

1
1

).
It is necessary to distinguish two cases.

Case I: −1 /∈ (o/p)2

We write A = A1 + A2, where A1 =
∑

z∈o/p . . . and A2 =
∑

x∈(o/p)×
∑

z∈o/p . . .. It is not hard
to compute that

A1 = qχ2($)−1f(g10) +
q − 1

2
f(g8) +

q − 1

2
f(g12).

To compute A2, we use the matrix identity
1

1
$x $x2 1
$ $x 1



1

1
$ 1

1



1

1 z$−1

1
1

 =


1

x$−1

1+x2
x−1

1+x2

x−1$
1

1+x2


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
1

−$ 1
1

$ $ 1

 s2


1

−x2 1 x2(z(1 + x2) + 1)$−1

1
x2 1



1

−x(1 + x2)
−x−1

1 + x2


If z runs through o/p, then x2(z(1 + x2) + 1) does as well. Hence

A2 = qχ2($)−1
∑

x∈(o/p)×

∑
z∈o/p

f(


1

−$ 1
1

$ $ 1

 s2


1

1 z$−1

1
1

) (29)

The matrix identity
1

−$ 1
1

$ $ 1

 =


1 −1

1 $ −1
1

1



1

1
1

$ 1



1 1

1 1
1

1

 (30)

shows that

A2 = qχ2($)−1
∑

x∈(o/p)×
f(g10) + qχ2($)−1

∑
x,z∈(o/p)×

f(


1
$ 1

1
$ −$ 1



1

1
z$−1 1

1

 s2)

= q(q − 1)χ2($)−1f(g10)

+ qχ2($)−1
∑

x,z∈(o/p)×
f(


1
$ 1

1
$ −$ 1



1

−z−1$
−z$−1

1

s2

1

1 z−1$
1

1

 s2)

= q(q − 1)χ2($)−1f(g10) + (q − 1)
∑

z∈(o/p)×
f(


1
−z 1

1
$ z 1



1

1
−z−1$ 1

1

).
By Lemma 2.12 we get

A2 = q(q − 1)χ2($)−1f(g10) + (q − 1)
(
f(g7) +

q − 1

2
f(g8) +

q − 1

2
f(g12)− f(g12)

)
Adding A1 and A2, it follows that

A = (q − 1)f(g7) +
q(q − 1)

2
f(g8) + q2χ2($)−1f(g10) +

(q − 2)(q − 1)

2
f(g12).

Adding A and B, we get

(µf)(g8) = (q − 1)f(g7) +
q2 − 1

2
f(g8) + q2χ2($)−1f(g10) + q2χ1($)−1f(g11) +

(q − 1)2

2
f(g12).
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This gives the eigth row in our matrix for the case that −1 /∈ (o/p)2.

Case II: −1 ∈ (o/p)2

Let x0 ∈ o× such that x20 = −1. We have A = A1 +A2 with

A1 =
∑

x,z∈o/p
x 6=±x0

f(


1

1
$x $x2 1
$ $x 1



1

1
$ 1

1



1

1 z$−1

1
1

).
and

A2 = 2
∑
z∈o/p

f(


1

1
$x0 1
$ $x0 1



1

1 z$−1

1
1

).
Up to the point (29), the calculation of A1 proceeds like the calculation of A in Case I. We get
A1 = A11 +A12 with

A11 = qχ2($)−1
∑
z∈o/p

f(


1

1
1

$ 1



1

1
z$−1 1

1

 s2)

and

A12 = qχ2($)−1
∑

x∈(o/p)×
x 6=±x0

∑
z∈o/p

f(


1
$ 1

1
$ −$ 1



1

1
z$−1 1

1

 s2).

Hence A11 coincides with the previous A1, and A12 is q−3
q−1 times the previous A2. Thus

A11 = qχ2($)−1f(g10) +
q − 1

2
f(g8) +

q − 1

2
f(g12)

and

A12 =
q − 3

q − 1

(
q(q − 1)χ2($)−1f(g10) + (q − 1)

(
f(g7) +

q − 1

2
f(g8) +

q − 1

2
f(g12)− f(g8)

))
Note that the last term, which comes from Lemma 2.12, is f(g8) and not f(g12), since −1 is
now a square. Combining we get

A1 = (q − 3)f(g7) +
q2 − 5q + 8

2
f(g8) + q(q − 2)χ2($)−1f(g10) +

(q − 1)(q − 2)

2
f(g12).

Finally,

A2 = 2
∑
z∈o/p

f(


1

1
$ 1
$ $ 1



1

1 z$−1

1
1

).
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We use the identity
1

1
$ 1
$ $ 1



1

1 z$−1

1
1



=
1

z + 1


1 −1

z + 1 z$−1 z$−1

1 1
z + 1



1

1
−$ 1

$ 1




1 1
−z 1

1 −1
z 1


for z /∈ −1 + p, and

1
1

$ 1
$ $ 1



1

1 −$−1

1
1

 =


1

1 −$−1

1
1



1

1
$ 1

$ 1



1
1 1

1
−1 1


for z = −1, and get

A2 = 2f(g7) + 2(q − 1)f(g8).

Adding A1 and A2 gives

A = (q − 1)f(g7) +
q2 − q + 4

2
f(g8) + q(q − 2)χ2($)−1f(g10) +

(q − 1)(q − 2)

2
f(g12).

Adding A and B, we get

(µf)(g8) = (q−1)f(g7)+
q2 + 3

2
f(g8)+q(q−2)χ2($)−1f(g10)+q2χ1($)−1f(g11)+

(q − 1)2

2
f(g12).

This gives the eigth row of our matrix in the second case. — Another complicated case, and the
last one we shall treat in this proof, is (µf)(g10) = A+B with

A =
∑

x,z∈o/p

f(


1

1
1

$ 1

 s2


1 x

1
1 −x

1



1

1 z$−1

1
1

)
and

B =
∑
z∈o/p

f(


1

1
1

$ 1

 s2


1 z$−1

1
1

1

).
We write A as A1+A2, where A1 =

∑
z∈o/p . . . and A2 =

∑
x∈(o/p)×

∑
z∈o/p . . .. Straightforward

calculations using only (28) show that

B = q2χ1($)−1f(g4) + (q − 1)f(g10)
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and

A1 = f(g10) + q−1χ2($)
q − 1

2
f(g8) + q−1χ2($)

q − 1

2
f(g12)

(again assuming odd residue characteristic; in the even case replace g12 by g8). In order to
compute A2 we use the identity

1
1

1
$ 1

 s2


1 x

1
1 −x

1



1

1 z$−1

1
1

 =


−x−1$−1 −$−1 x

−x
x−1 −1

x$



=


1

1
$−1x−1 $−1 1

$−1(z + x−2) $−1x−1 1

 s2s1s2


−1

−x−1 −1
1

−x−1 1

 .

It shows that

A2 = q2(q − 1)χ1($)−1
∑
z∈o/p

f(


1

1
$−1 $−1 1
z$−1 $−1 1

 s2s1s2).

By Lemma 2.12 ii),

A2 = q−1(q − 1)χ2($)f(g7) + (q − 1)f(g10) + q−1 (q − 1)2

2
χ2($)(f(g8) + f(g12))

− q−1(q − 1)χ2($)f(


1

1
−$ 1

$ 1

).
Hence, in Case I (i.e., −1 /∈ o/p)2),

A2 = q−1(q − 1)χ2($)f(g7) + (q − 1)f(g10) + q−1 (q − 1)2

2
χ2($)f(g8)

+
q−1(q − 1)(q − 3)

2
χ2($)f(g12),

and in Case II,

A2 = q−1(q − 1)χ2($)f(g7) + (q − 1)f(g10) +
q−1(q − 1)(q − 3)

2
χ2($)f(g8)

+ q−1 (q − 1)2

2
χ2($)f(g12).

Therefore, in Case I,

A = q−1(q − 1)χ2($)f(g7) +
q − 1

2
χ2($)f(g8) + qf(g10) +

q−1(q − 1)(q − 2)

2
χ2($)f(g12),
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and in Case II,

A = q−1(q − 1)χ2($)f(g7) +
q−1(q − 1)(q − 2)

2
χ2($)f(g8) + qf(g10) +

q − 1

2
χ2($)f(g12).

Adding A and B, we get in Case I

(µf)(g10) = q2χ1($)−1f(g4) + q−1(q − 1)χ2($)f(g7)

+
q − 1

2
χ2($)f(g8) + (2q − 1)f(g10) +

q−1(q − 1)(q − 2)

2
χ2($)f(g12),

and in Case II

(µf)(g10) = q2χ1($)−1f(g4) + q−1(q − 1)χ2($)f(g7)

+
q−1(q − 1)(q − 2)

2
χ2($)f(g8) + (2q − 1)f(g10) +

q − 1

2
χ2($)f(g12).

This gives the tenth row of our matrix.

3 Global theory

For the global theory of Siegel modular forms it is more convenient to work with the “official”
version of G = GSp(4) instead of the one defined in (2). Hence, from now on we shall use

GSp(4) = {g ∈ GL(4) : tg

[
12

−12

]
g = λ(g)

[
12

−12

]
for some scalar λ(g)}. (31)

An isomorphism between this group and the one defined in (2) is provided by switching the first
two rows and the first two columns, i.e., by conjugation with the matrix

1
1

1
1

 .

The minimal parabolic subgroup B, the Siegel parabolic subgroup P and the Klingen parabolic
subgroup Q then take the following shapes,

B =


∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗
∗ ∗

 , P =


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗
∗ ∗

 , Q =


∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗

∗

 .

For a positive integer N we define as usual

Γ0(N) = Sp(4,Z) ∩


Z Z Z Z
Z Z Z Z
NZ NZ Z Z
NZ NZ Z Z

 .
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3.1 Modular forms

Let H2 be the Siegel upper half plane of degree 2, i.e.,

H2 = {
[
τ z
z τ ′

]
, τ, z, τ ′ ∈ C, im(τ) > 0, im(τ ′) > 0, im(τ)im(τ ′)− im(z)2 > 0}.

The group G(R)+ = {g ∈ GSp(4,R) : λ(g) > 0} acts on H2 by linear fractional transformations

Z 7→ g〈Z〉 = (AZ +B)(CZ +D)−1, g =

[
A B
C D

]
∈ G(R)+.

We define the usual modular factor

j(g, Z) = det(CZ +D) for Z ∈ H2 and g =

[
A B
C D

]
∈ G(R)+.

Let k be a positive integer. The weight-k slash operator
∣∣
k
, or simply

∣∣, defines an action of
G(R)+ on functions F : H2 → C via the formula

(F
∣∣g)(Z) = λ(g)kj(g, Z)−kF (g〈Z〉) for g ∈ G(R)+.

Note that there are different normalizations for the slash operator in the literature; our choice of
factor λ(g)k = det(g)k/2 ensures that the center of G(R)+ acts trivially. Let Γ be a congruence
subgroup of Sp(4,Q). A modular form (always of degree 2) of weight k with respect to Γ is a
holomorphic function F on H2 such that F

∣∣γ = F for all γ ∈ Γ. We denote the space of such
modular forms by Mk(Γ), and the subspace of cusp forms by Sk(Γ). An element F ∈ Mk(Γ0(N))
has a Fourier expansion of the form

F (Z) =
∑
T

c(T )e2πi tr(TZ),

where T runs over positive semidefinite symmetric matrices of the form

[
n r/2
r/2 m

]
with integers

n, r,m. If we write c(n, r,m) for c(T ) and (τ, z, τ ′) for Z =

[
τ z
z τ ′

]
∈ H2, then the Fourier

expansion reads

F (τ, z, τ ′) =
∑

n,r,m≥0

c(n, r,m)e2πi(nτ+rz+mτ ′).

It can be rewritten in the form of a Fourier-Jacobi expansion

F (τ, z, τ ′) =

∞∑
m=0

fm(τ, z)e2πimτ ′ , (32)

where fm(τ, z) =
∑

n,r c(n, r,m)e2πi(nτ+rz) is a Jacobi form of index m with respect to a congru-
ence subgroup of the full Jacobi modular group. Later we will require the following symmetry
properties of Fourier coefficients.

c(T ) = det(A)kc( tATA) (A ∈ SL(2,Z)) (33)

c(n, r,m) = (−1)kc(m, r, n) (34)

c(n, r,m) = c(n, r + 2λn, m+ λr + λ2n) (λ ∈ Z) (35)

c(n, r,m) = c(n+ λr + λ2m, r + 2λm, m) (λ ∈ Z) (36)
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Modular forms as functions on the adele group

Let A be the ring of adeles of the number field Q. Let N =
∏

pnp be the prime decomposition
of the positive integer N . For each prime number p let

Kp = Si(pnp) = GSp(4,Zp) ∩
[

o o
pnp o

]
(p = pZp),

the local Siegel congruence subgroup of level pnp . Note that Kp = GSp(4,Zp) for almost all p.
Then K =

∏
p<∞Kp is an open subgroup of GSp(4,Af ), and

Γ0(N) = GSp(4,Q)+ ∩K. (37)

Strong approximation for Sp(4) implies that G(A) = G(Q)G(R)+K. This allows us to attach to
a given F ∈ Mk(Γ0(N)) an adelic function Φ : G(A) → C in the following way. Decomposing a
given g ∈ G(A) as g = ρhκ with ρ ∈ G(Q), h ∈ G(R)+ and κ ∈ K, we define

Φ(g) = (F
∣∣
k
h)(I), g = ρhκ with ρ ∈ G(Q), h ∈ G(R)+, κ ∈ K. (38)

Here I is the element

[
i 0
0 i

]
of H2. In view of (37), the function Φ is well-defined. It has the

invariance properties

Φ(ρgκz) = Φ(g) for all g ∈ G(A), ρ ∈ G(Q), κ ∈ K, z ∈ Z(A),

where Z is the center of GSp(4). In fact, Φ is an automorphic form on PGSp(4,A). One can
show that Φ is a cuspidal automorphic form if and only if F ∈ Sk(Γ0(N)). Assuming this is
the case, we consider the cuspidal automorphic representation π = πF generated by Φ. This
representation may not be irreducible, but it always decomposes as a finite direct sum π = ⊕iπi
with irreducible, cuspidal, automorphic representations πi.

3.2 Definition and basic properties of µp

In this section we shall introduce a linear operator µp on Mk(Γ0(N)), p2|N , which is analogous,
and in fact compatible, with the local µ operator defined in Sect. 2.1. Let F ∈ Mk(Γ0(N)) and
p be a prime number with p2|N . We consider the summation

F ′ =
∑

u∈Z/pZ

F
∣∣

1

1 up−1

1
1

 . (39)

It is easily checked that this function is invariant under the group

Sp(4,Q) ∩


Z pZ Z Z
Z Z Z p−1Z
NZ NZ Z Z
NZ NZ pZ Z

 . (40)
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If we restore the invariance under elements

[
A

tA

]
, A ∈ SL(2,Z), we obtain a new element of

Mk(Γ0(N)). Therefore, we let

µpF :=
∑

A∈
[Z pZ
Z Z

]
\SL(2,Z)

∑
u∈Z/pZ

F
∣∣

1

1 up−1

1
1

[
A

tA−1

]
. (41)

This defines an endomorphism µp of Mk(Γ0(N)) and, via restriction, an endomorphism µp of
Sk(Γ0(N)). An explicit formula is

µpF =
∑

t,u∈Z/pZ

F
∣∣

1 up−1

1
1

1



1
t 1

1 −t
1

+
∑

u∈Z/pZ

F
∣∣

1

1 up−1

1
1

 . (42)

Alternatively,

µpF =
∑

t,u∈Z/pZ

F
∣∣

1 up−1 tup−1

1 tup−1 t2up−1

1
1

+
∑

u∈Z/pZ

F
∣∣

1

1 up−1

1
1

 . (43)

In particular, µp has a definition in terms of elements of the unipotent radical of the Siegel
parabolic subgroup.

3.1 Proposition. Let N be a positive integer and p a prime number with p2|N .

i) The endomorphism µp of Mk(Γ0(N)) is diagonalizable.

ii) The only possible eigenvalues of µp on Mk(Γ0(N)) are p(p+ 1), 2p, p and 0. Hence

Mk(Γ0(N)) = Mk(Γ0(N))p(p+1) ⊕Mk(Γ0(N))2p ⊕Mk(Γ0(N))p ⊕Mk(Γ0(N))0. (44)

Here, Mk(Γ0(N))i denotes the i-eigenspace of µp on Mk(Γ0(N)). A similar decomposition
holds for cusp forms,

Sk(Γ0(N)) = Sk(Γ0(N))p(p+1) ⊕ Sk(Γ0(N))2p ⊕ Sk(Γ0(N))p ⊕ Sk(Γ0(N))0. (45)

This decomposition is orthogonal with respect to the Petersson inner product.

For the following statements let F ∈ Mk(Γ0(N)).

iii) We have F ∈ Mk(Γ0(N))p(p+1) if and only if F is invariant under the group

Sp(4,Q) ∩


1 p−1Z p−1Z

1 p−1Z p−1Z
1

1

 . (46)
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iv) If F ∈ Mk(Γ0(N))2p, then

∑
t,u∈Z/pZ

F
∣∣

1 tp−1

1 tp−1 up−1

1
1

 = 0. (47)

v) If F ∈ Mk(Γ0(N))p, then

∑
s,u∈Z/pZ

F
∣∣

1 sp−1

1 up−1

1
1

 = 0. (48)

vi) We have µpF = 0 if and only if

∑
u∈Z/pZ

F
∣∣

1

1 up−1

1
1

 = 0. (49)

vii) If (47) holds, then F ∈ Mk(Γ0(N))2p ⊕Mk(Γ0(N))0.

viii) If (48) holds, then F ∈ Mk(Γ0(N))p ⊕Mk(Γ0(N))0.

Proof: The proofs of i) through vi) are very similar to the proofs of the analogous local state-
ments in Proposition 2.1. However, for the sake of clarity we shall repeat them.

i) Starting from any inner product on Mk(Γ0(N)), we can, by summation, easily construct, an
inner product that is invariant under the group

Sp(4,Q) ∩


1 p−1Z p−1Z

1 p−1Z p−1Z
1

1

 .

Using (43), it is easily checked that µp is self-adjoint with respect to this inner product. There-
fore, µp is diagonalizable. (On Sk(Γ0(N)) we could have used the Petersson inner product.)

We will now prove ii), iii), iv) and v). Assume that µpF = cF for some c ∈ C. Let F ′ be defined
as in (39). From (43) we get

cF − F ′ =
∑

t,u∈Z/pZ

F
∣∣

1 up−1 tup−1

1 tup−1 t2up−1

1
1

 .
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Applying the summation that defines F ′ to both sides of this equation, we get

(c− p)F ′ =
∑

t,u∈Z/pZ

F ′∣∣

1 up−1 tup−1

1 tup−1

1
1

 ,

and hence

(c− 2p)F ′ =
∑

t∈Z/pZ

∑
u∈(Z/pZ)×

F ′∣∣

1 up−1 tp−1

1 tp−1

1
1

 . (50)

If we abbreviate

F ′′ :=
∑

t,u∈Z/pZ

F
∣∣

1 tp−1

1 tp−1 up−1

1
1

 ,

this can be written as

(c− 2p)F ′ =
∑

s∈Z/pZ

F ′′∣∣

1 sp−1

1
1

1

− F ′′. (51)

If c = 2p, then it follows that F ′′ is invariant under
1 p−1

1
1

1

 .

Hence the right side of (51) equals (p− 1)F ′′. It follows that F ′′ = 0 if c = 2p. This proves iv).
Now assume that c 6= 2p. Then it follows from (50) that F ′ is invariant under

Sp(4,Q) ∩


1 p−1Z

1 p−1Z
1

1


and hence, again from (50),

(c− 2p)F ′ = p
∑

u∈(Z/pZ)×
F ′∣∣


1 up−1

1
1

1

 .
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Adding pF ′ to both sides, we get

(c− p)F ′ = p
∑

u∈Z/pZ

F ′∣∣

1 up−1

1
1

1

 . (52)

For c = p this proves v). Assume that c 6= 2p and c 6= p. Then it follows from (52) that F ′ is
invariant under

Sp(4,Q) ∩


1 p−1Z p−1Z

1 p−1Z p−1Z
1

1

 (53)

By (41), the same is then true for µpF = cF . If c 6= 0, it follows that F is invariant under the
group (53). But in this case µpF = p(p+ 1)F by (43). This proves ii) and iii).

vi) It is clear from the definition of µp that (49) implies µpF = 0. Assume conversely that
µpF = 0. Let F ′ be as in (39). We just proved that F ′ is invariant under the group (53).
Consequently,

p2F ′ =
∑

s,t∈Z/pZ

F ′∣∣

1 sp−1 tp−1

1 tp−1

1
1

 =
∑

s,t,u∈Z/pZ

F
∣∣

1 sp−1 tp−1

1 tp−1 up−1

1
1

 .

This last expression is clearly invariant under

[
A

tA−1

]
with A ∈ SL(2,Z). By (41), µpF =

(p+ 1)F ′. Thus µpF = 0 implies F ′ = 0, as asserted.

vii) Write F = Fp(p+1) + F2p + Fp + F0 with Fi in the i-eigenspace of µp. Applying

∑
s,t,u∈Z/pZ

. . .
∣∣

1 sp−1 tp−1

1 tp−1 up−1

1
1


to both sides, it follows by iii), iv) and v) that Fp(p+1) = 0. It is therefore enough to show that
if F ∈ Mk(Γ0(N))p and (47) holds, then F = 0. The condition (47) means that the function
F ′′ occurring in (51) is zero. With c = p in (51) it follows that F ′ = 0. Hence F is in the
p-eigenspace and in the kernel of µp, and therefore zero.

viii) For the proof of the last statement we shall use Lemma 3.5 below (which will follow from
Fourier coefficient considerations). Again, write F = Fp(p+1) + F2p + Fp + F0 with Fi in the
i-eigenspace of µp. As in the proof of vii) we conclude that Fp(p+1) = 0. It is therefore enough
to show that if F ∈ Mk(Γ0(N))2p and (48) holds, then F = 0. This is the statement of Lemma
3.5.
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The operator µp defined by (41) and the local operator µ defined by (6) are compatible, in the
following sense. Let p2|N and F ∈ Sk(Γ0(N)), and assume that the associated adelic function
Φ defined in (38) generates an irreducible, cuspidal, automorphic representation π of GSp(4,A).
We can write π as a restricted tensor product ⊗πv with irreducible, admissible representations
(πv, Vv) of GSp(4,Qv). Let us assume in addition that Φ corresponds to a pure tensor ⊗fv, where
fv ∈ Vv. Then, if pn is the exact power of p dividing N , we have fv ∈ Vv,0(n), the subspace of
vectors in Vv invariant under the local congruence subgroup Si(pn); here p = pZp. The local and
global µ operators are compatible in the sense that the cusp form µpF corresponds to the pure
tensor

(µfp) ·
⊗
v 6=p

fv, (54)

where µ is the endomorphism of Vv,0(n) defined by (6). In other words, in order to find the
tensor corresponding to µpF , we replace in the tensor corresponding to F the p-component fp
by µfp. This follows from a straightforward calculation: If we define an operator µ on adelic
functions by right translating with the p-adic elements occurring in (8), then µpF = µΦ.

Fourier coefficients and µp

We shall now compute µp in terms of Fourier coefficients. First we explain our conventions
about the Legendre symbol. Let p be an odd prime number and x ∈ Z with p - x. We define, as
usual, (x

p

)
=

{
1 if x is a square mod p,
−1 if x is a non-square mod p.

For p = 2 we define
(
x
p

)
only for x ∈ 4Z+ 1. We set

(x
2

)
=

{
1 if x ∈ 8Z+ 1,
−1 if x ∈ 8Z+ 5.

3.2 Lemma. Let n, r,m be integers and p a prime number. The congruence

n+ rt+mt2 ≡ 0 mod p (55)

has

• p solutions mod p, if p|m, p|r and p|n;

• two solutions mod p, if p - m, p - r2 − 4mn and
(r2 − 4mn

p

)
= 1;

• one solution mod p, if

– p - m, p|r2 − 4mn, or if

– p|m, p - r;

• no solution, if

– p - m, p - r2 − 4mn and
(r2 − 4mn

p

)
= −1, or if
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– p|m, p|r, p - n.

Proof: First assume that p is odd. If p|m, the congruence (55) becomes a linear congruence,
for which the number of solutions is obvious. If p - m, (55) is equivalent to

(2mt+ r)2 ≡ r2 − 4mn mod p.

From this the lemma follows easily. – Now assume that p = 2. In this case it is trivial to check
that (55) has

• two solutions mod p, if n is even and r +m is even;

• one solution mod p, if r +m is odd;

• no solution, if n is odd and r +m is even.

By our conventions about the Legendre symbol explained above, these are the same conditions
as the one listed in the lemma.

For the next lemma we use the following notation. Let n, r,m be integers and p a prime number.
If p is odd, then

rankp(

[
2n r
r 2m

]
)

means the rank of the matrix

[
2n r
r 2m

]
after reduction mod p. If p = 2, then we define

rank2(

[
2n r
r 2m

]
) =


0 if 2|n, 2|r, 2|m,
1 if 2|r, but 2 divides not both of n and m,
2 if 2 - r.

3.3 Lemma. Let N be a positive integer and p a prime with p2|N . Let F ∈ Mk(Γ0(N)) with
Fourier expansion F (τ, z, τ ′) =

∑
n,r,m c(n, r,m)e2πi(nτ+rz+mτ ′). Then

(µpF )(τ, z, τ ′) = p(p+ 1)
∑
n,r,m

p|m, p|r, p|n

c(n, r,m)e2πi(nτ+rz+mτ ′)

+ 2p
∑
n,r,m

p-m, p-r2−4mn(
r2−4mn

p

)
=1

c(n, r,m)e2πi(nτ+rz+mτ ′) + 2p
∑
n,r,m
p|m, p-r

c(n, r,m)e2πi(nτ+rz+mτ ′)

+ p
∑
n,r,m

p-m, p|r2−4mn

c(n, r,m)e2πi(nτ+rz+mτ ′) + p
∑
n,r,m

p|m, p|r, p-n

c(n, r,m)e2πi(nτ+rz+mτ ′). (56)

Alternatively,

(µpF )(Z) = p(p+ 1)
∑
T

rankp(2T )=0

c(T )e2πitr(TZ)
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+ 2p
∑
T

rankp(2T )=2(
− det(2T )

p

)
=1

c(T )e2πitr(TZ)

+ p
∑
T

rankp(2T )=1

c(T )e2πitr(TZ). (57)

Proof: It is easy to check that (56) and (57) are equivalent; we shall prove (56). We have
(µpF )(τ, z, τ ′) = A+B with

A =
∑

t,u∈Z/pZ

(F
∣∣

1 up−1 tup−1

1 tup−1 t2up−1

1
1

)(τ, z, τ ′)
and

B =
∑

u∈Z/pZ

(F
∣∣

1

1 up−1

1
1

)(τ, z, τ ′).
We compute

A =
∑

t,u∈Z/pZ

(F
∣∣

1 up−1 tup−1

1 tup−1 t2up−1

1
1

)(τ, z, τ ′)
=

∑
t,u∈Z/pZ

F (τ + up−1, z + tup−1, τ ′ + t2up−1)

=
∑
n,r,m

∑
t,u∈Z/pZ

c(n, r,m)e2πi(nτ+rz+mτ ′)e2πi(n+rt+mt2)up−1
.

By Lemma 3.2,

A = p2
∑
n,r,m

p|m, p|r, p|n

c(n, r,m)e2πi(nτ+rz+mτ ′) + 2p
∑
n,r,m

p-m, p-r2−4mn(
r2−4mn

p

)
=1

c(n, r,m)e2πi(nτ+rz+mτ ′)

+ p
∑
n,r,m
p|m, p-r

c(n, r,m)e2πi(nτ+rz+mτ ′) + p
∑
n,r,m

p-m, p|r2−4mn

c(n, r,m)e2πi(nτ+rz+mτ ′).

Furthermore,

B = p
∑
n,r,m
p|m

c(n, r,m)e2πi(nτ+rz+mτ ′)
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= p
∑
n,r,m
p|m, p|r

c(n, r,m)e2πi(nτ+rz+mτ ′) + p
∑
n,r,m
p|m, p-r

c(n, r,m)e2πi(nτ+rz+mτ ′).

Adding A and B gives the result.

Lemma 3.3 shows again that µp has only the four possible eigenvalues p(p + 1), 2p, p and 0.
Moreover, we note the following consequence.

3.4 Proposition. Let N be a positive integer and p a prime number with p2|N . Let F ∈
Mk(Γ0(N)) have Fourier expansion F (τ, z, τ ′) =

∑
n,r,m c(n, r,m)e2πi(nτ+rz+mτ ′). Write F =

Fp(p+1) + F2p + Fp + F0 with Fi ∈ Mk(Γ0(N))i according to the decomposition (44). Then

Fp(p+1) =
∑
n,r,m

p|m, p|r, p|n

c(n, r,m)e2πi(nτ+rz+mτ ′) =
∑
T

rankp(2T )=0

c(T )e2πitr(TZ),

F2p =
∑
n,r,m

p-m, p-r2−4mn(
r2−4mn

p

)
=1

c(n, r,m)e2πi(nτ+rz+mτ ′) +
∑
n,r,m
p|m, p-r

c(n, r,m)e2πi(nτ+rz+mτ ′)

=
∑
T

rankp(2T )=2(
− det(2T )

p

)
=1

c(T )e2πitr(TZ),

Fp =
∑
n,r,m

p-m, p|r2−4mn

c(n, r,m)e2πi(nτ+rz+mτ ′) +
∑
n,r,m

p|m, p|r, p-n

c(n, r,m)e2πi(nτ+rz+mτ ′)

=
∑
T

rankp(2T )=1

c(T )e2πitr(TZ),

F0 =
∑
n,r,m

p-m, p-r2−4mn(
r2−4mn

p

)
=−1

c(n, r,m)e2πi(nτ+rz+mτ ′) =
∑
T

rankp(2T )=2(
− det(2T )

p

)
=−1

c(T )e2πitr(TZ).

In particular, these four functions are elements of Mk(Γ0(N)). The same statements are true
with Sk(Γ0(N)) instead of Mk(Γ0(N)).

We shall now prove Lemma 3.5, which was used in the proof of Proposition 3.1.

3.5 Lemma. Let F ∈ Mk(Γ0(N))2p such that

∑
s,u∈Z/pZ

F
∣∣

1 sp−1

1 up−1

1
1

 = 0. (58)

Then F = 0.
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Proof: Let F (τ, z, τ ′) =
∑

n,r,m c(n, r,m)e2πi(nτ+rz+mτ ′) be the Fourier expansion of F . By
Proposition 3.1 iv), we have

c(n, r,m) = 0 for p|r and p|m.

Equation (58) is equivalent to

c(n, r,m) = 0 for p|n and p|m,

Observing (34), it follows that c(n, r,m) = 0 whenever two of the numbers n, r or m are divisible
by p. We claim that c(n, r,m) = 0 if p|m or p|n. We just saw that c(n, r,m) = 0 if p|n and p|m.
To prove the claim, we may, by (34), assume that p - n and p|m. If p|r, then c(n, r,m) = 0 since
p divides two of the numbers n, r or m. If p - r, we consider a transformation of the form (36)
with λr ≡ −n mod p. Then

c(n, r,m) = c(n+ λr + λ2m, r + 2λm,m) = 0,

since p|n + λr + λ2m and p|m. This proves our claim that c(n, r,m) = 0 if p|m or p|n. – Now
assume that there exists n, r,m such that c(n, r,m) 6= 0; we will obtain a contradiction. By

Lemma 3.3 and by what we just proved, we have p - m, p - r2 − 4mn, and
(
r2−4mn

p

)
= 1. By

Lemma 3.2, there exists λ ∈ Z such that n + λr + λ2m ≡ 0 mod p. By (36) it follows that
c(n, r,m) = 0, a contradiction.

3.3 Characterizations of the eigenspaces

In the following we shall give various characterizations of the eigenspaces occurring in the de-
composition (44) resp. (45).

The p(p+ 1) eigenspace

Let N be a positive integer and p a prime number. There is a simple level raising operator

βp : Mk(Γ0(N)) −→ Mk(Γ0(Np))

given by

βpF = F
∣∣

p

p
1

1

 .

Restriction to cusp forms gives a linear map βp : Sk(Γ0(N)) → Sk(Γ0(Np)). Evidently, βp is
injective. Modular forms in the image of β should be considered “old”, but there are many more
modular forms that should be viewed as oldforms.

3.6 Proposition. Let N be a positive integer and p a prime number with p2|N . The following
statements are equivalent for a non-zero F ∈ Mk(Γ0(N)).

i) F is in the image of βp : Mk(Γ0(Np−1)) → Mk(Γ0(N)).
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ii) F is invariant under the congruence subgroup

Sp(4,Q) ∩


Z Z p−1Z p−1Z
Z Z p−1Z p−1Z
NZ NZ Z Z
NZ NZ Z Z

 .

iii) If F (τ, z, τ ′) =
∑

n,r,m c(n, r,m)e2πi(nτ+rz+mτ ′) is the Fourier expansion of F , then

c(n, r,m) 6= 0 =⇒ p|n, p|r, p|m.

iv) µpF = p(p+ 1)F .

Proof: The equivalence of i), ii) and iii) is an easy exercise. The equivalence of iii) and iv)
follows from Lemma 3.3.

The 2p eigenspace

3.7 Proposition. Let N be a positive integer and p a prime number with p2|N . The following
statements are equivalent for a non-zero F ∈ Mk(Γ0(N)) with Fourier expansion F (τ, z, τ ′) =∑

n,r,m c(n, r,m)e2πi(nτ+rz+mτ ′).

i)

∑
t,u∈Z/pZ

F
∣∣

1 tp−1

1 tp−1 up−1

1
1

 = 0, but
∑

u∈Z/pZ

F
∣∣

1

1 up−1

1
1

 6= 0.

ii) c(n, r,m) = 0 if p|m and p|r, but there exists a non-zero c(n, r,m) with p|m and p - r.

iii) c(n, r,m) 6= 0 implies

• p - m, p - r2 − 4mn and
(r2 − 4mn

p

)
= 1, or

• p|m and p - r.

iv) c(T ) 6= 0 implies rankp(2T ) = 2 and
(−det(2T )

p

)
= 1.

v) µpF = 2pF .

Proof: The equivalence of i) and ii) follows from a straightforward calculation. The equivalence
of iii), iv) and v) follows from Lemma 3.3. The equivalence of i) and v) follows from Proposition
3.1.
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The p eigenspace

3.8 Proposition. Let N be a positive integer and p a prime number with p2|N . The following
statements are equivalent for a non-zero F ∈ Mk(Γ0(N)) with Fourier expansion F (τ, z, τ ′) =∑

n,r,m c(n, r,m)e2πi(nτ+rz+mτ ′).

i)

∑
s,u∈Z/pZ

F
∣∣

1 sp−1

1 up−1

1
1

 = 0, but
∑

u∈Z/pZ

F
∣∣

1

1 up−1

1
1

 6= 0.

ii) c(n, r,m) = 0 if p|m and p|n, but there exists a non-zero c(n, r,m) with p|m and p - n.

iii) c(n, r,m) 6= 0 implies

• p - m and p|r2 − 4mn, or

• p|m, p|r and p - n.

iv) c(T ) 6= 0 implies rankp(2T ) = 1.

v) µpF = pF .

Proof: The equivalence of i) and ii) follows from a straightforward calculation. The equivalence
of iii), iv) and v) follows from Lemma 3.3. The equivalence of i) and v) follows from Proposition
3.1.

The kernel of µp

3.9 Proposition. Let N be a positive integer and p a prime number with p2|N . The following
statements are equivalent for a non-zero F ∈ Mk(Γ0(N)) with Fourier expansion F (τ, z, τ ′) =∑

n,r,m c(n, r,m)e2πi(nτ+rz+mτ ′).

i)

∑
u∈Z/pZ

F
∣∣

1

1 up−1

1
1

 = 0.

ii)

∑
s,u∈Z/pZ

F
∣∣

1 sp−1

1 up−1

1
1

 = 0 and
∑

t,u∈Z/pZ

F
∣∣

1 tp−1

1 tp−1 up−1

1
1

 = 0.

iii) c(n, r,m) = 0 if two of the numbers n, r and m are divisible by p.



3 GLOBAL THEORY 44

iv) c(n, r,m) 6= 0 implies p - m.

v) c(n, r,m) 6= 0 implies p - m, p - r2 − 4mn and
(r2 − 4mn

p

)
= −1.

vi) c(T ) 6= 0 implies rankp(2T ) = 2 and
(−det(2T )

p

)
= −1.

vii) µpF = 0.

Proof: The equivalence of i) and iv) follows from a straightforward calculation. Observing (34),
the equivalence of ii) and iii) follows also from an obvious calculation. The equivalence of v),
vi) and vii) follows from Lemma 3.3. Clearly, i) implies ii). If ii) holds, then, by Proposition 3.1
vii) and viii), F ∈ ker(µp). Thus ii) implies vii). The equivalence of i) and vii) was stated in
Proposition 3.1 vi).

3.4 Hypercuspidal modular forms

The following definition can be made for modular forms with respect to any congruence subgroup
Γ that contains 

1
1 Z

1
1

 .

3.10 Definition. Let p be a prime number. The modular form F ∈ Mk(Γ) is called p-hypercus-
pidal if there exists an integer l ≥ 1 such that

∑
u∈Z/plZ

F
∣∣
k


1

1 up−l

1
1

 = 0.

If l is minimal with this property, then we say that F is hypercuspidal of degree l.

A straightforward calculation shows that if F has the Fourier-Jacobi expansion (32), then

∑
u∈Z/plZ

(F
∣∣
k


1

1 up−l

1
1

)(τ, z, τ ′) = pl
∞∑

m=0

fmpl(τ, z)e
2πimplτ ′ . (59)

Hence we see that F is p-hypercuspidal if and only if there exists an integer l ≥ 1 such that
fmpl = 0 for all m ≥ 0. Another equivalent condition is that the Fourier coefficients c(n, r,m)

are zero whenever pl|m.

Hypercuspidal modular forms are not easy to construct. For example, it can be shown that
cusp forms with respect to paramodular groups are never hypercuspidal. Also, if p2 - N , then
a non-zero F ∈ Sk(Γ0(N)) can be shown to be not hypercuspidal. The strongest form of
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hypercuspidality is that of degree 1. By Proposition 3.9, a non-zero F ∈ Mk(Γ0(N)), p2|N , is
hypercuspidal of degree 1 if and only if µpF = 0.

3.11 Theorem. Let N and k be positive integers, k ≥ 3, and F ∈ Sk(Γ0(N)) be non-zero. Let
T be a set (finite or infinite) of primes not dividing N , such that for each v ∈ T the function
F is an eigenfunction for the action of the local Hecke algebra Hv. Then, given a prime p - N ,
there exists F̃ ∈ Sk(Γ0(p

2N)) such that F̃ is p-hypercuspidal of degree 1, and such that F̃ is an
eigenfunction for the action of the local Hecke algebra Hv with the same Hecke eigenvalues as
F for each v ∈ T different from p.

Proof: The idea is to locally replace the spherical vector at the place p with a hypercuspidal
vector. Let Φ be the adelic function attached to F , and let π = ⊕πi be the cuspidal repre-
sentation of G(A) generated by Φ, as explained at the end of Sect. 3.1. We write each of the
irreducible components πi as a restricted tensor product πi = ⊗vπi,v. Our hypotheses imply
that πi,v is spherical for each prime v - N , and that

πi,v ∼= πj,v for all v ∈ T and all i, j.

In fact, if Φ =
∑

Φi with Φi in the space of πi, and if Φi is written as a sum of pure tensors
⊗fv, then we may assume that fv is the spherical vector in πi,v for each v - N . By the main
theorem of [PS], each of the local representations πi,v, v - N , is of type I or IIb. A look at Table
1 shows that spherical type I or type IIb representations contain a Siegel vector f̃v at level p2

that is in the kernel of µ; in fact, the space of such vectors is one-dimensional. Now we replace
in the pure tensors ⊗fv the local vector fp with f̃p. The resulting adelic function corresponds
to a cusp form F̃ ∈ Sk(Γ0(p

2N)). Since the local and global µ operators are compatible, see
(54), we have µpF̃ = 0, as desired. Since we did not change the automorphic representations
involved, but merely specific vectors in these representations, the function F̃ has the same Hecke
properties as F away from the place p where we made the change.

Remarks:

i) The hypothesis k ≥ 3 in Theorem 3.11 is necessary. There exist elements of spaces
S2(Γ0(N)) that generate certain CAP representations with local components of type VId.
Table 1 shows that we would not be able to find elements in the kernel of µ at level p2 for
these representations.

ii) The strong multiplicity one conjecture is expected to hold for non-Saito–Kurokawa cusp
forms of weight k ≥ 3. Assuming this is the case, let F ∈ Sk(Γ0(N)), k ≥ 3, be an
eigenform for almost all Hecke operators. We assume that F is not Saito–Kurokawa,
which is equivalent to the degree-4 L-function of F not having a pole at s = 3/2. Then
the cusp form F̃ in Theorem 3.11 is unique up to multiples. For, by strong multiplicity
one, any other such cusp form has to lie in the same automorphic representation as F̃ .
The uniqueness then follows from local uniqueness, meaning the one-dimensionality of the
kernel of µ on Siegel vectors of level p2; see Table 1.



REFERENCES 46

References

[EZ] Eichler M., Zagier, D.: The Theory of Jacobi Forms. Birkhäuser, Progress in
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