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Let k be a number field with ring of adelesA, letB be a quaternion algebra
defined overk, and letG = B×. Letπ be an infinite dimensional irreducible
cuspidal automorphic representation ofG(A). Then the vanishing or non-
vanishing ofL(1/2, π) has been conjectured or shown to be equivalent to
conditions of considerable interest in number theory or automorphic repre-
sentation theory. For example, ifk = Q, B = M2×2 andπ corresponds to
an elliptic curveE defined overQ, then Birch and Swinnerton-Dyer conjec-
tured that the order of vanishing ofL(s, π) at1/2 is the rank of the torsion
free part ofE(Q). To take another example, if the central character ofπ
is trivial, then Waldspurger showed in [W1] and [W2] that the nonvanish-
ing of L(1/2, π) is equivalent to the nonvanishing of the theta lift ofπ to
Mp(2,A), the metaplectic cover ofSl(2,A). In this paper, again when the
central character ofπ is trivial, we show how another condition is related
to the nonvanishing ofL(1/2, π). We also consider the implications of our
results for modular forms.

Our first main result relates the nonvanishing ofL(1/2, π) to the exis-
tence of another irreducible cuspidal automorphic representationσ ofG(A)
along with an embedding ofπ in σ ⊗ σ∨. For a precise account we need
some notation. Ifσ is an infinite dimensional irreducible cuspidal automor-
phic representation ofG(A), define the trilinear form

T (σ ⊗ σ∨ ⊗ π) : σ ⊗ σ∨ ⊗ π → C
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by

f1 ⊗ f2 ⊗ f 7→
∫

A×G(k)\G(A)
f1(g)f2(g)f(g) dg.

For the remainder of this introduction, assume that the central character ofπ
is trivial. In Theorem 1 we prove that if there exists an infinite dimensional
irreducible cuspidal automorphic representationσ ofG(A) such thatT (σ⊗
σ∨ ⊗ π) 6= 0, thenL(1/2, π) 6= 0. We also show that the converse holds
in the caseG 6= Gl(2). To prove Theorem 1, we use the above mentioned
criterion of Waldspurger and theta correspondences in the form of certain
seesaw pairs. Theorem 1 is proven in Sect. 1. In Sect. 1 we also discuss
some possible similar results and the connection of Theorem 1 to the Jacquet
conjecture.

In the caseG = Gl(2), the first part of Theorem 1 has a consequence
for modular forms. As an illustration of the more general result of Sect. 3,
suppose thatN is a nonnegative integer,k is a positive even integer and
F1 ∈ Sk/2(Γ0(N)) is an eigenform of the Hecke operatorsT (p) for p - N .
ThenF 2

1 ∈ Sk(Γ0(N)). The above result implies that ifF ∈ Sk(Γ0(N)) is
a new form and〈F, F 2

1 〉Γ0(N)\H 6= 0 thenL(k/2, F ) 6= 0.
Under some hypotheses, in the caseG = Gl(2), our second main result

gives a necessary and sufficient condition forT (π⊗π(χ)⊗π(χ)∨) 6= 0 for
someχ, whereχ is a Hecke character of a quadratic extensionE of k that
does not factor throughNE

k , andπ(χ) is the irreducible cuspidal automorphic
representation ofGl(2,A) associated toχ. Suppose such aχ exists. By
Theorem 1, we haveL(1/2, π) 6= 0. Using Theorem 1 again, we show that
L(1/2, π⊗ωE/k) 6= 0. See Lemma 2. We prove in Theorem 2 that for many
π, these two necessary conditions are also sufficient. To prove this result,
we use another seesaw. See Lemma 1. By this lemma, our trilinear form is
related to the product of two integrals overA×E×\A×

E . These integrals can
be analyzed using the main result of [W3], and an idea from [H]. This result
is described in Sect. 2.

Our final main result applies Theorem 2 to modular forms. The key step
in making the transition from the abstract situation of Theorem 2 to modular
forms is to show that the local trilinear forms do not vanish on certain pure
tensors formed from a combination of new and old vectors. In particular, we
need more information than is contained in [GP], where the case of a triple
tensor product of unramified representations or a triple tensor product of
special representations is treated. We also need to generalize the description
of the new vector in a Kirillov model from [GP] to the case when the central
character is not trivial. The result on trilinear forms appears in Lemma 3, and
the new vector in a Kirillov model is described in the discussion preceding
the lemma.
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We will use the following notation and definitions. Given a topologi-
cal group, a character of the group is a continuous homomorphism from the
group toC×, and the trivial character of the group is denoted by1. Through-
out the paper,k is a number field, with group of adelesA, B is quaternion
algebra defined overk, andG = B×. The notation for trilinear forms will
be as above. Letv be a place ofk, and letπ be an irreducible admissible rep-
resentation ofG(kv) or an irreducible cuspidal automorphic representation
of G(A). The central character ofπ will be denoted byωπ, and the contra-
gredient ofπ by π∨. If π is an infinite dimensional irreducible cuspidal au-
tomorphic representation ofG(A), letJL(π) be the the infinite dimensional
irreducible cuspidal automorphic representation ofGl(2,A) associated to
π by the Jacquet-Langlands correspondence, as in Theorem 10.5 of [Ge].
If τ is an irreducible cuspidal automorphic representation ofGl(2,A), and
τ lies in the Jacquet-Langlands correspondence with respect toG(A), let
JL(τ) be the associated infinite dimensional irreducible cuspidal automor-
phic representation ofG(A); otherwise, letJL(τ) = 0. If π is an infinite
dimensional irreducible cuspidal automorphic representation ofG(A), then
L(s, π) is defined to beL(s, JL(π)). LetE be a quadratic extension ofk. We
denote the nontrivial Hecke character ofA× that is trivial onk× NE

k (A×
E)

by ωE/k. If χ is a Hecke character ofA×
E that does not factor throughNE

k ,
thenπ(χ) is the irreducible cuspidal automorphic representation ofGl(2,A)
associated toχ as in Theorem 7.11 of [Ge]. IfF is a nonarchimedean local
field, thenSp is the special representation ofGl(2, F ), i.e., the irreducible
quotient ofρ(| |−1/2, | |1/2); the last representation is defined as in [Ge]. If
D is a quaternion algebra, the canonical involution ofD will be denoted by
∗ and the reduced normN and traceT ofD are defined byN(x) = xx∗ and
T (x) = x+x∗. Let(U, ( , )) be a nonzero, nondegenerate finite dimensional
symmetric or symplectic bilinear space over a fieldF not of characteristic
two. An F linear mapT : U → U is called a similitude if there exists
λ ∈ F× such that(Tu, Tu′) = λ(u, u′) for u, u′ ∈ U ; in this case,λ is
uniquely determined, and we writeλ(T ) = λ. We denote the group of all
similitudes byGO(U) or GSp(U), depending on whetherU is symmetric
or symplectic, respectively. IfU is symmetric and of dimension2n, then
we denote the subgroup ofT ∈ GO(U) such thatdet(T ) = λ(T )n by
GSO(U). The notation for modular forms will be as in [Sh]. Finally, ifM
is a positive integer, we let

WM =
(

0 −1
M 0

)
.

In preparing this work, I benefited from some discussions with F. Rodri-
guez-Villegas. The idea of using the seesaw of Lemma 1 to obtain this result
was told to me by D. Prasad. I also thank the referee for useful comments
and corrections.
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1. The general case

In this section we prove Theorem 1. At the end of the section we make some
remarks about the proof and possible analogous results. We also discuss the
relationship between Theorem 1 and the Jacquet conjecture.

To prove Theorem 1 we will use a certain seesaw from the theory of
the theta correspondence. For an outline of the global theory of the theta
correspondence for isometries and similitudes, the reader can consult [HPS]
and Sect. 2 of [HST], respectively. For more about seesaws, see [K].

Theorem 1. Let π be an infinite dimensional irreducible cuspidal auto-
morphic representation ofG(A) with trivial central character. If there there
exists an infinite dimensional irreducible cuspidal automorphic represen-
tation σ of G(A) such thatT (σ ⊗ σ∨ ⊗ π) 6= 0, thenL(1/2, π) 6= 0.
Conversely, ifL(1/2, π) 6= 0 andG 6= Gl(2), then there exists an infinite
dimensional irreducible cuspidal automorphic representationσ of G(A)
such thatT (σ ⊗ σ∨ ⊗ π) 6= 0.

Proof. To define the seesaw used in the proof, letX be the symmetric bilinear
space defined overk with underlying spaceB and symmetric bilinear form
( , ) corresponding to−N, whereN the reduced norm ofB. LetX0 be the
subspace ofX of elementsx such thatx∗ = x, and letX1 be the subspace of
X of trace zero elements. Then there is an orthogonal decompositionX =
X0 ⊥ X1. LetY be the nondegenerate two dimensional symplectic bilinear
space overk. We writeSl(2) = Sp(Y ) andGl(2) = GSp(Y ). Consider
the symplectic spacesW = X ⊗ Y , W0 = X0 ⊗ Y andW1 = X1 ⊗ Y
defined overk. Via the obvious inclusions,(O(X),Sl(2)) is a dual pair
in Sp(W ). Via the inclusion coming from the orthogonal decomposition
W = W0 ⊥ W1, (O(X0) × O(X1),Sl(2) × Sl(2)) is also a dual pair in
Sp(W ). SinceSl(2) is contained inSl(2) × Sl(2) andO(X0) × O(X1)
is contained inO(X), our two dual pairs are seesaw dual pairs, which is
illustrated by the diagram:

Sl(2)× Sl(2) O(X)
↑ × ↑

Sl(2) O(X0)×O(X1)
.

Let q be the projection of the metaplectic groupMp(W (A)) ontoSp(W
(A)). Since the dimension ofX is even, it follows that the inverse images of
Sl(2,A) andO(X(A)) in Mp(W (A)) are split. It follows that the inverse
image ofO(X0(A))×O(X1(A)) is also split. However, the inverse image
of Sl(2,A)× Sl(2,A) is not split.

In addition, consider the dual pairs(O(X0),Sl(2)) in Sp(W0) and(O
(X1),Sl(2)) in Sp(W1). The inverse images ofO(X0(A)) andO(X1(A))
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are split, while those ofSl(2,A) are commonly isomorphic toMp(2,A).
Moreover, there is an epimorphismp of Mp(2,A)×Mp(2,A) ontoq−1(Sl
(2,A)× Sl(2,A)) such that the following diagram commutes:

Mp(2,A)×Mp(2,A)
p−−−→ q−1(Sl(2,A)× Sl(2,A))y y

Sl(2,A)× Sl(2,A) id−−−→ Sl(2,A)× Sl(2,A)

.

Here, the vertical maps are projections.
We can summarize the situation by the following diagram:

Mp(2,A)×Mp(2,A)
p→ q−1(Sl(2,A)× Sl(2,A)) O(X(A))

i ↑ × ↑
Sl(2,A) O(X0(A))×O(X1(A))

.

Next, we define the representations that will be used to construct our theta
lifts. Fix a nontrivial additive unitary characterψ of A/k. Fix a symplectic
basise, f for Y . Fix a basise0 = 1 for X0, and fix an orthogonal basis
e1, e2, e3 for X1. Thene0, . . . , e3 is an orthogonal basis forX, and

1
(e0, e0)

e0 ⊗ e, . . . , 1
(e3, e3)

e3 ⊗ e, e0 ⊗ f, . . . , e3 ⊗ f

is a symplectic basis forW . This basis also contains obvious symplec-
tic bases forW0 andW1. As usual, the above basis forW determines
a complete polarization ofW , and we have an identification of the Lan-
grangian spanned bye0 ⊗ f, . . . , e3 ⊗ f with X. Similar comments apply
toW0 andW1. Let (r0, L2(X0(A))), (r1, L2(X1(A))) and(r, L2(X(A)))
be the Schr̈odinger models of the Weil representations ofMp(W0(A)),
Mp(W1(A)) and Mp(W (A)) defined with respect toψ, and the above
symplectic bases, respectively [Rao]. Denote the composition ofr with the
natural maps ofq−1(Sl(2,A)× Sl(2,A))× (O(X0(A))×O(X1(A))) and
Sl(2,A) × O(X(A)) into Mp(W (A)) by ω andω′, respectively. Then the
seesaw property holds: the restrictions ofω andω′ toSl(2,A)×(O(X0(A))
×O(X1(A))) are identical. In addition, we have a decomposition ofω. De-
note the composition ofr0 andr1 with the natural maps ofMp(2,A) ×
O(X0(A)) into Mp(W0(A)) andMp(2,A)×O(X1(A)) into Mp(W1(A))
byω0 andω1, respectively. Then the map from the tensor product of Hilbert
spacesL2(X0(A)) ⊗C L

2(X1(A)) to L2(X(A)) determined by mapping
ϕ0 ⊗ ϕ1 to ϕ with ϕ(x0 ⊕ x1) = ϕ0(x0)ϕ1(x1) is an isomorphism ofC
vector spaces such that

ω(p(g0, g1), (h0, h1))ϕ(x0 ⊕ x1) = ω0(g0, h0)ϕ0(x0)ω1(g1, h1)ϕ1(x1)
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forϕ0⊗ϕ1 ∈ L2(X0(A))⊗CL
2(X1(A)), (g0, g1) ∈ Mp(2,A)×Mp(2,A)

and(h0, h1) ∈ O(X0(A))×O(X1(A)).
In fact, to define the theta lifts we will use certain subspaces of smooth

vectors. If v is a finite place ofk let S(X(kv)) be theC subspace of
L2(X(kv)) of locally constant, compactly supported functions. Ifv is real,
let S(X(kv)) be the subspace of functions of the form

p(x0, . . . , x3) exp(−|c|
2

(x2
0 + · · ·+ x2

3))

wherep is a polynomial in four variables withC coefficients, andψv(x) =
exp(icx); this is the subspace corresponding to the polynomials in the Fock
model of the Weil representation ofMp(W (kv)) [A]. If v is complex we
make a similar definition. LetS(X(A)) be the restricted direct product of the
S(X(kv)). Similar definitions hold forW0 andW1. We note that under the
above isomorphism, the ordinary tensor productS(X0(A)) ⊗C S(X1(A))
is mapped ontoS(X(A)).

We define the appropriate theta kernels. Forϕ ∈ S(X(A)), (g′, h′) ∈
Sl(2,A)×O(X(A)) and(g, h) ∈ q−1(Sl(2,A)×Sl(2,A))×(O(X0(A))×
O(X1(A))) let

θ(g, h;ϕ)=
∑

x∈X(k)

ω(g, h)ϕ(x), θ(g′, h′;ϕ)=
∑

x∈X(k)

ω′(g′, h′)ϕ(x) .

If (g, h) = (g′, h′) is inSl(2,A)×(O(X0(A))×O(X1(A))), these functions
clearly agree. Forϕ0 ∈ S(X0(A)), ϕ1 ∈ S(X1(A)), g ∈ Mp(2,A), h0 ∈
O(X0(A)) andh1 ∈ O(X1(A)) let

θ(g, h0;ϕ0) =
∑

x∈X0(k)

ω0(g, h0)ϕ0(x) ,

θ(g, h1;ϕ1) =
∑

x∈X1(k)

ω1(g, h1)ϕ1(x) .

If ϕ0 ∈ S(X0(A)), ϕ1 ∈ S(X1(A)), g0, g1 ∈ Mp(2,A), h0 ∈ O(X0(A)),
h1 ∈ O(X1(A)), andϕ ∈ S(X(A)) corresponds toϕ0 ⊗ ϕ1, then

θ(p(g0, g1), (h0, h1);ϕ) = θ(g0, h0;ϕ0)θ(g1, h1;ϕ1) .

There is a characterization of the right hand side of the above diagram that
we will use. We have the following commutative diagram:

GSO(X(A)) ∼←−−− (G(A)×G(A))/A×x x
SO(X1(A)) ∼= SO(X0(A))× SO(X1(A)) ∼←−−− G(A)/A×

.
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Here, the top map is defined byρ(g, g′)x = gxg′−1, the bottom map is
defined byρ(g)x = gxg−1, and the second vertical map takesg to (g, g);
note thatSO(X0(A)) is trivial.

Next, we recall the theta correspondences and seesaw identity associated
to our situation. Fix anSO(X1(A)) right invariant measure onSO(X1(k))\
SO(X1(A)). Let f ∈ π and letϕ ∈ S(X(A)). Let f̃ be the function
on SO(X0(A)) × SO(X1(A)) such thatf̃ ◦ ρ = f . Define θ(f̃ , ϕ) on
q−1(Sl(2,A)× Sl(2,A)) by

θ(f̃ , ϕ)(g) =
∫

SO(X1(k))\ SO(X1(A))
θ(g, (1, h1);ϕ)f̃(h1) dh1.

If ϕ corresponds toϕ0 ⊗ ϕ1 ∈ S(X0(A)) ⊗C S(X1(A)), and(g0, g1) ∈
Mp(2,A)×Mp(2,A) then

θ(f̃ , ϕ)(p(g0, g1)) = θ(g0, 1;ϕ0)θ(f̃ , ϕ1)(g1),

whereθ(f̃ , ϕ1) is the theta lift defined in [W1], p. 25, and denoted there by
Tψ′(ϕ1, g1, f) for the additive characterψ′ defined byψ′(x) = ψ(x/2).

The second theta correspondence will require some more notation. By
[HK1], the representationω′ extends to a representation of the group

R′(A) = {(g, h) ∈ Gl(2,A)×GO(X(A)) : det(g) = λ(h)}.
See also [R1]. Here,λ(h) is the similitude factor ofh ∈ GO(X(A)). With
the aid of the extended representation we can lift representations ofGl(2,A).
Fix a rightSl(2,A) invariant measure onSl(2, k)\Sl(2,A). Define, as above,
θ(g, h;ϕ) for (g, h) ∈ R′(A) andϕ ∈ S(X(A)). Suppose thatτ is an
irreducible cuspidal automorphic representation ofGl(2,A). Let f ′ ∈ τ
andϕ ∈ S(X(A)). Defineθ(f ′, ϕ) onGSO(X(A)) by

θ(f ′, ϕ)(h) =
∫

Sl(2,k)\ Sl(2,A)
θ(g1g′, h;ϕ)f ′(g1g′) dg1.

Here, g′ ∈ Gl(2,A) is such thatdet(g′) = λ(h). Note that forh ∈
SO(X(A)), θ(f ′, ϕ)(h) is the same as the usual theta lift off ′, regarded as
a cusp form onSl(2,A), with respect toϕ. Let θ(τ) be theC vector space
spanned by the functionsθ(f ′, ϕ) for f ′ ∈ τ andϕ ∈ S(X(A)). Then
θ(τ) ◦ ρ = {F ◦ ρ : F ∈ θ(τ)} is theC vector space spanned by the func-
tionsf1⊗f2, wheref1 ∈ JL(τ) andf2 ∈ JL(τ)∨, andf1⊗f2 is the function
on (G(A)×G(A))/A× defined by(f1 ⊗ f2)(g1, g2) = f1(g1)f2(g2). For
details, see [H] and [S1].

To state the seesaw identity for theta lifts, letτ be an irreducible cuspidal
automorphic representation ofGl(2,A). Because our dual pairs form a see-
saw, ifτ is an irreducible cuspidal automorphic representation ofGl(2,A),
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then we have

〈f ′, θ(f̃ , ϕ)〉Sl(2) = 〈f̃ , θ(f ′, ϕ)〉SO(X1)

for f ∈ π, f ′ ∈ τ , andϕ ∈ S(X(A)). Here,

〈f ′, θ(f̃ , ϕ)〉Sl(2) =
∫

Sl(2,k)\ Sl(2,A)
f ′(g)θ(f̃ , ϕ)(g) dg,

and〈f̃ , θ(f ′, ϕ)〉SO(X1) is similarly defined. Before beginning the proof, we
give a simplified diagram which summarizes our notation.

θ(f̃ ;ϕ) Sl(2)× Sl(2) O(X) θ(f ′;ϕ) ∈ σ ⊗ σ∨
↑ × ↑

f ′ ∈ τ Sl(2) O(X0)×O(X1) f ∈ π
.

Now assume that there exists an infinite dimensional irreducible auto-
morphic representationσ of G(A) such thatT (σ ⊗ σ∨ ⊗ π) 6= 0. Let
T = T (σ ⊗ σ∨ ⊗ π). ThenT (f1 ⊗ f2 ⊗ f) 6= 0 for somef1 ∈ σ, f2 ∈ σ∨
andf ∈ π. From above, we can writef1 ⊗ f2 as a linear combination of
functionsθ(f ′, ϕ) ◦ ρ, wheref ′ ∈ τ = JL(σ) andϕ ∈ S(X(A)). From
T (f1 ⊗ f2 ⊗ f) 6= 0 it follows that there existf ′ ∈ τ andϕ ∈ S(X(A))
such that〈f, θ(f ′, ϕ)◦ρ〉G 6= 0. Here, the integral is overA×G(k)\G(A) ∼=
SO(X1(k))\SO(X1(A)). Now:

〈f, θ(f ′, ϕ) ◦ ρ〉G = 〈f̃ ◦ ρ, θ(f ′, ϕ) ◦ ρ〉G
= 〈f̃ , θ(f ′, ϕ)〉SO(X1)

= 〈f ′, θ(f̃ , ϕ)〉Sl(2).

Since〈f, θ(f ′, ϕ)◦ρ〉G 6= 0, we haveθ(f̃ , ϕ) 6= 0. It follows thatθ(f̃ , ϕ) 6=
0 for someϕ = ϕ0⊗ϕ1 ∈ S(X0(A))⊗C S(X1(A)). Hence,θ(f̃ , ϕ1) 6= 0.
By [W1], Théor̀eme 1, and [W2], Proposition 22, this implies thatL(1/2, π)
6= 0.

Next, assume thatL(1/2, π) 6= 0 andG 6= Gl(2), so thatB(k) is a
division algebra. Letf ∈ π andϕ ∈ S(X(A)). Assume thatϕ = ϕ0⊗ϕ1 ∈
S(X0(A))⊗C S(X1(A)). We first show thatθ(f̃ , ϕ)|Sl(2,A) is a cusp form.
Let g ∈ Sl(2,A), and let(g0, g1) ∈ Mp(2,A) × Mp(2,A) be such that
p(g0, g1) = g, whereg is regarded as an element ofq−1(Sl(2,A)×Sl(2,A)).
A computation shows that∫
k\A

θ(f̃ , ϕ)(i(
(

1 n
0 1

)
g)) dn =

∑
x∈X0(k)

ω0(g0, 1)ϕ0(x)

W (ϕ1, g1, f̃ ,−(x, x))

=
∑
a∈k

ω0(g0, 1)ϕ0(a · 1)W (ϕ1, g1, f̃ , a
2),
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where, as in [W1],

W (ϕ1, g1, f̃ , t) =
∫
k\A

θ(f̃ , ϕ1)(
(

1 n
0 1

)
g1)ψ′(−tn) dn

for t ∈ k. We assert thatW (ϕ1, g1, f̃ , a
2) = 0 for all g1 ∈ Mp(2,A) and

a ∈ k. If a = 0, this follows as in [W1], p. 30. Since for allg1 ∈ Mp(2,A)
anda ∈ k×,

W (ϕ1, g1, f̃ , a
2) = W (ϕ1, (

(
a 0
0 a−1

)
, 1)g1, f̃ , 1),

it now suffices to show thatW (ϕ1, g1, f̃ , 1) = 0 for g1 ∈ Mp(2,A). As in
[W1], p. 29, forg1 ∈ Mp(2,A),

W (ϕ1, g1, f̃ , 1) =
∫

SO(X1(k))\ SO(X1(A))∑
x∈X1(k), (x,x)=1

ω1(g1, h1)ϕ1(x)f̃(h1) dh1.

SinceB(k) is a division algebra, there exist nox ∈ X1(k) such that(x, x) =
1, and our claim follows.

SinceL(1/2, π) 6= 0, again by [W2], there existf ∈ π,ϕ1 ∈ S(X1(A))
andg1 ∈ Mp(2,A) so thatθ(f̃ , ϕ1)(g1) 6= 0. There existsϕ0 ∈ S(X0(A))
andg0 ∈ Mp(2,A) such thatp(g0, g1) ∈ i(Sl(2,A)) andθ(g0, 1;ϕ0) 6= 0.
By the last paragraph, it follows that ifϕ = ϕ0 ⊗ϕ1, thenθ(f̃ , ϕ)|Sl(2,A) is
a nonzero cusp form onSl(2,A). Hence, there exists an infinite dimensional
irreducible automorphic cuspidal representationτ of Gl(2,A) andf ′ ∈ τ
so that〈f ′, θ(f̃ , ϕ)〉Sl(2) 6= 0. Since〈f ′, θ(f̃ , ϕ)〉Sl(2) 6= 0 for somef ′ ∈ τ ,

we have〈f̃ ◦ ρ, θ(f ′, ϕ) ◦ ρ〉G 6= 0 by an identity from above. This implies
thatT (σ ⊗ σ∨ ⊗ π) 6= 0, whereσ = JL(τ). This completes the proof of
Theorem 1. ut

We make some remarks on the proof of Theorem 1 and a possible anal-
ogous result. The argument for the second part of Theorem 1 fails ifG =
Gl(2). In this case, we do not always haveW (ϕ1, g, f̃ , 1) = 0. To see this,
suppose thatB(k) is not a division algebra and that the notation is as in
proof of Theorem 1. Then by [W1], p. 30,

W (ϕ1, g, f̃ , 1) =
∫
S(A)\ SO(X1(A))

ω1(g, h1)ϕ1(x1)∫
S(k)\S(A)

f̃(sh1) dsdh1.
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Here,S(k) andS(A) are the groups of elements inSO(X1(k)) andSO
(X1(A)), respectively, that fix

x1 =
(

0 1
1 0

)
.

Now S(k) is conjugate to the image underρ of the subgroup ofGl(2, k)
consisting of the elements of the form(

a 0
0 1

)
,

wherea ∈ k×. As in [W1], for a proper choice off ∈ π and h1 ∈
SO(X1(A)), we find that∫

S(k)\S(A)
f̃(sh1) ds =

∫
k×\A×

f

(
a 0
0 1

)
da

= L(1/2, π) .

Since we are assumingL(1/2, π) 6= 0, this implies that for somef ∈ π,
ϕ1 ∈ S(X1(A)) andg ∈ Mp(2,A) we haveW (ϕ1, g, f̃ , 1) 6= 0.

As for the similar result, it may be possible to prove a statement analogous
to Theorem 1, with the quadratic base change of an irreducible cuspidal
automorphic representation ofGl(2,A) in place ofσ ⊗ σ∨. This might
be obtained by replacingX0 from the proof of Theorem 1 with a different
one dimensional symmetric bilinear space. For example, fix a quadratic
extensionK = k(

√
d) of k with Galois groupGal(K/k) = {1, γ}, and

consider the symmetric bilinear spaceX overkwith underlying vector space

X ′(k) = {
(

a b
√
d

c
√
d γ(a)

)
: a ∈ K, b, c ∈ k}

and bilinear form coming from the restriction of(−1/d) · det. We see that
X ′(k) = X ′

0(k) ⊥ X ′
1(k), where againX ′

0(k) = k · I andX ′
1(k) is

the subspace of elements of trace zero. Also,X ′
1(k) is isometric toX1(k)

from the proof of Theorem 1. However,X0(k) andX ′
0(k) are not isometric,

nor areX(k) andX ′(k). The appropriate identifications of the groups of
similitudes are now given by

GSO(X ′(A)) ∼←−−− (A× ×Gl(2,A))/A×x x
SO(X ′

1(A)) ∼= SO(X ′
0(A))× SO(X ′

1(A)) ∼←−−− Gl(2,A)/A×.

Here, the top mapρ is defined byρ(t, g)x = t−1gxγ(g)∗, the bottom map
is defined byρ(g)x = gxg−1, and the second vertical map sendsg to
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(det(g), g). The inclusion ofA× takesx to (NK
k (x), x). With these objects

playing the role of their counterparts, there may be a development like that in
the proof of Theorem 1. However, the theta correspondence from the proof
of Theorem 1 that involves the Jacquet-Langlands correspondence will now
involve base change toGl(2,A). In the general setting, this theta correspon-
dence has not been developed as thoroughly as the one corresponding to the
Jacquet-Langlands correspondence. See, however, [C] and [R2].

Finally, we make some remarks about the connection between Theorem 1
and the Jacquet conjecture. Recall that, in our case, the Jacquet conjecture
states that ifσ is an irreducible cuspidal automorphic representation of
G(A), and at every place ofk, the local component ofπ embeds in the local
component ofσ⊗σ∨, thenT (σ⊗σ∨⊗π) 6= 0 if and only ifL(1/2, JL(σ)⊗
JL(σ∨)⊗JL(π)) 6= 0. The Jacquet conjecture is known in many cases. See
[HK2]. Now if σ is an irreducible cuspidal automorphic representation of
G(A), then

L(s, JL(σ)⊗ JL(σ∨)⊗ JL(π)) = L(s, π)L(s, JL(π)⊗ JL(σ), r).

Here,r is the representation of theL-groupGl(2,C)×Gl(2,C) of Gl(2)×
Gl(2) with underlying vector spaceC2 ⊗ Sym2 C2, and action defined by
r(g, g′) = g⊗ (1/det g′) Sym2 g′. The action onC2 is the standard one. As
is pointed out in [GK],L(s, JL(π)⊗JL(σ), r) is entire. If the Jacquet conjec-
ture is true, then the first part of Theorem 1 follows from the above equality of
L-functions. It is not clear if the second part of Theorem 1 also follows from
the assumption of the Jacquet conjecture. In addition to assuming the Jacquet
conjecture, one would need aσ such thatL(1/2, JL(π)⊗ JL(σ), r) 6= 0.

2. The case of Hecke characters

In this section we consider the case whenB = M2×2 andσ = π(χ), where
χ is a Hecke character of a quadratic extensionE of k that does not factor
throughNE

k , andπ(χ) is the irreducible cuspidal automorphic representation
of Gl(2,A) associated toχ. We show that for manyπ, there exists aχ such
thatT (π(χ)⊗π(χ)∨⊗π) 6= 0 if and only ifL(1/2, π)L(1/2, π⊗ωE/k) 6=
0. Using another seesaw, Lemma 1 reduces the analysis of such trilinear
forms to the investigation of some period integrals overA×E×\A×

E . These
integrals can be understood using [W3] and an idea from [H]. The seesaws of
Theorem 1 and Lemma 1 are quite analogous and of the same general type.
However, in contrast to the seesaw in Theorem 1, in Lemma 1 the trilinear
form appears on the symplectic side of the seesaw.

Lemma 1. Let D be a quaternion algebra defined overk and letE be
a quadratic extension ofk contained inD(k) as a k subalgebra. Let
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Gal(E/k) = {1, γ}. Let χ0 and χ1 be Hecke characters ofA×
E that do

not factor throughNE
k . Letπ be an irreducible cuspidal automorphic rep-

resentation ofGl(2,A). Assume thatωπχ0|A×χ1|A× = 1. If∫
A×E×\A

×
E

f1(x)χ0(x)χ1(x) dx

·
∫

A×E×\A
×
E

f2(y)χ0(y)−1χ1(γ(y))−1 dy 6= 0

for somef1 ∈ JL(π), f2 ∈ JL(π)∨, then

T (π(χ0)⊗ π(χ1)⊗ π) 6= 0.

Proof. The proof of the lemma will be analogous to the proof of Theorem 1.
Again, we will use a seesaw. To define the seesaw, regardD as a symmetric
bilinear spaceX with symmetric bilinear form( , ) induced by the reduced
norm ofD. LetX0 be the subspace ofX such thatX0(k) = E, and letX1 be
the orthogonal complement toX0. DefineY ,W0,W1 andW as in the proof
of Theorem 1. We have the analogous seesaw dual pairs(O(X),Sl(2)) and
(O(X0)×O(X1),Sl(2)×Sl(2)) in Sp(W ), and the same seesaw diagram.
We also have the auxiliary dual pairs(O(X0),Sl(2)) and(O(X1),Sl(2))
in Sp(W0) andSp(W1), respectively. For the same reasons as before, the
inverse images ofO(X(A)), Sl(2,A) andO(X0(A))×O(X1(A)) are split;
since the dimensions ofX0 andX1 are even, it also follows that the inverse
images ofO(X0(A)) andSl(2,A) in Sp(W0(A)) and ofO(X1(A)) and
Sl(2,A) in Sp(W1(A)) are split. This implies that the inverse image of
Sl(2,A)× Sl(2,A) in Sp(W (A)) is split.

We will use the same notation as in the proof of Theorem 1 for the Weil
representations and their restrictions. However, nowω is a representation of
(Sl(2,A)× Sl(2,A))× (O(X0(A))×O(X1(A))), and

ω((g0, g1), (h0, h1))ϕ(x0 ⊕ x1) = ω0(g0, h0)ϕ0(x0)ω1(g1, h1)ϕ1(x1)

for ϕ = ϕ0 ⊗ ϕ1 ∈ L2(X0(A)) ⊗C L2(X1(A)), (g0, g1) ∈ Sl(2,A) ×
Sl(2,A) and(h0, h1) ∈ O(X0(A))×O(X1(A)).

In fact, for the proof we will need the similitude version of the seesaw. The
similitude seesaw and identity require some more notation and observations.
First, we claim that there is a quaternion algebra basis1, i, j,k = ij forD(k)
such thatX0(k) = E = k+k·iandX1(k) = k·j+k·k = E·j. To see this, let
E = k+k·i, wherei2 ∈ k×. Since the canonical involution∗ofD generates
Gal(E/k), i∗ = −i, and(1, i) = 0. Letx ∈ X1(k) be nonzero. Consider the
setE′ of elements ofD(k) that commute withx. Asx /∈ k, this isk+ k ·x.
Now as ak algebra,E′ is either a quadratic extension ofk or isomorphic
to k × k. Moreover, the restriction of∗ generatesGal(E′/k). Hence, there
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existsj ∈ E′ such thatE′ = k + k · j, j2 ∈ k× and(1, j) = 0. Let k = ij.
Sincex ∈ X1(k), we have(i, x) = 0, so that(i, j) = 0, i.e., ij = −ji.
We conclude that any two distinct elements among1, i, j,k are orthogonal,
and hence1, i, j,k is a basis. Since(X0(k), k · j + k · k) = 0, we have
X1(k) = k · j + k · k. We note that sinceX0(k) = E andX1(k) = Ej, the
symmetric bilinear form onX1(k) is equivalent toN(j) times the symmetric
bilinear form onX0(k).

Using the last observation, we can identifyGSO(X0(A)) andGSO(X1
(A)). Fora ∈ A×

E , letm(a) denote both the element ofGSO(X0(A)) and of
GSO(X1(A)) defined by left multiplication bya. It is well known that the
maps fromA×

E toGSO(X0(A)) andGSO(X1(A)) which senda tom(a) are
isomorphisms. Clearly, the similitude factorλ(m(a)) ofm(a) for a ∈ A×

E is
NE
k (a). It follows thatλ(GSO(X0(A))) = λ(GSO(X1(A))) = NE

k (A×
E).

The seesaw that we will use now is:

[Gl(2,A)+ ×Gl(2,A)+] GSO(X(A))
↑ × ↑

Gl(2,A)+ H(A) = [GSO(X1(A))×GSO(X2(A))]
.

Here,Gl(2,A)+ is the set ofg ∈ Gl(2,A) such that

det(g) ∈ λ(GSO(X0(A))) = λ(GSO(X1(A))) = NE
k (A×

E)

and[Gl(2,A)+×Gl(2,A)+] is the subgroup of pairs(g, g′) of Gl(2,A)+×
Gl(2,A)+ such thatdet(g) = det(g′), andH(A) = [GSO(X1(A)) ×
GSO(X2(A))] is the subgroup of pairs(h, h′) ∈ GSO(X0(A))×GSO(X2
(A)) such thatλ(h) = λ(h′). At this point we may as well state an iden-
tification of the right hand side of the diagram, analogous to the one of
Theorem 1. We have a commutative diagram

GSO(X(A)) ∼←−−− (D(A)× ×D(A)×)/A×x x
H(A) ∼←−−− (A×

E × A×
E)/A×

.

Here the top mapρ is as in Theorem 1, and the bottom map is defined by
ρ(x, y) = (m(xy−1),m(xγ(y)−1)). The vertical maps are inclusion.

As in the proof of Theorem 1, to introduce similitudes into the theta
correspondence, we will use the extended representation of [HK1]. LetR(A)
be as in the proof of Theorem 1, and defineR0(A) andR1(A) analogously.
Thenω0 andω1 extend to representations ofR0(A) andR1(A), respectively,
just as doesω′. Moreover, we have

ω′(g, (h0, h1))(ϕ)(x0 ⊕ x1) = ω0(g, h0)ϕ0(x0)ω1(g, h1)ϕ1(x1)
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for ϕ = ϕ0 ⊗ ϕ1 ∈ L2(X0(A)) ⊗C L2(X1(A)), (g, h0) ∈ R0(A) and
(g, h1) ∈ R1(A).

Using the extended representations we define the theta lifts, and fi-
nally state the seesaw identity. We defineθ(f ′, ϕ) on GSO(X(A)) for
f ′ ∈ π and ϕ ∈ S(X(A)) as in the proof of Theorem 1. Fix a right
SO(X0(A)) invariant measure onSO(X0(k))\SO(X0(A)). Using the iso-
morphism ofGSO(X0(A))with A×

E from above, defineF0 onGSO(X0(A))
byF0(m(x)) = χ0(x). Forϕ0 ∈ S(X0(A)) defineθ(F0, ϕ0) onGl(2,A)+

by

θ(F1, ϕ1)(g) =
∫

SO(X0(k))\ SO(X0(A))
θ(g, h1h;ϕ1)F1(h1h) dh1

whereh in GSO(X0(A)) is such thatdet(g) = λ(h). Forϕ0 ∈ S(X0(A)),
extendθ(F0, ϕ0) to a Gl(2, k) invariant function onGl(2,A) by setting
θ(F0, ϕ0)(g0g) = θ(F0, ϕ0)(g) for g0 ∈ Gl(2, k) and g ∈ Gl(2,A)+

and lettingθ(F0, ϕ0) be 0 off Gl(2, k) Gl(2,A)+. Then the automorphic
representation ofGl(2,A) generated by these functions isπ(χ0). Similar
notation and comments apply toX1 andχ1. See [HK2], Sect. 13.

An argument as in [HK1], Proposition 7.1.4, now shows that there exist
invariant measures onA× Gl(2, k)+\Gl(2,A)+ andA×H(k)\H(A) such
that forϕ0 ∈ S(X0(A)), ϕ1 ∈ S(X1(A)) andf ∈ π,

〈θ(F0, ϕ0)θ(F1, ϕ1), f〉Gl(2,A)+ = 〈θ(f, ϕ0 ⊗ ϕ1), F0 ⊗ F1〉H(A).

Here, the first integral is overA× Gl(2, k)+\Gl(2,A)+, and the second
integral is overA×H(k)\H(A).

The lemma follows easily from this identity. Suppose that the product
of the integrals in the statement of the lemma is nonzero, i.e., there exist
f1 ∈ JL(π) andf2 ∈ JL(π)∨,∫

A×E×\A
×
E

f1(x)χ0(x)χ1(x) dx

·
∫

A×E×\A
×
E

f2(y)χ0(y−1)χ1(γ(y)−1) dx 6= 0 .

As was pointed out in the proof of Theorem 1,f1⊗f2 is a linear combination
of functionsθ(f ′, ϕ) ◦ ρ wheref ′ ∈ π andϕ ∈ S(X(A)). Moreover, the
vectorsϕ0⊗ϕ1 forϕ0 ∈ S(X0(A)) andϕ1 ∈ S(X1(A)) spanS(X(A)). It
follows that since the last product of integrals is nonzero, for somef ′ ∈ π,
ϕ0 ∈ S(X0(A)) andϕ1 ∈ S(X1(A)) we have

〈θ(f ′, ϕ0 ⊗ ϕ1), F0 ⊗ F1〉H(A) 6= 0.
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By the seesaw identity,

〈θ(F0, ϕ0)θ(F1, ϕ1), f ′〉Gl(2,A)+ 6= 0.

This implies thatT (π(χ0)⊗ π(χ1)⊗ π) 6= 0. ut
The next lemma proves the necessity of the condition described at the

beginning of this section.

Lemma 2. Letπ be a cuspidal automorphic representation ofGl(2,A) with
trivial central character. LetE be a quadratic extension ofk, and suppose
χ is a Hecke character ofA×

E that does not factor throughNE
k . If

T (τ(χ)⊗ τ(χ)∨ ⊗ π) 6= 0

then
L(1/2, π)L(1/2, π ⊗ ωE/k) 6= 0.

Proof. Suppose thatT (π(χ) ⊗ π(χ)∨ ⊗ π) 6= 0. By Theorem 1 it will
suffice show thatT (π(χ) ⊗ π(χ)∨ ⊗ (π ⊗ ωE/k)) 6= 0. Now by the char-
acterization ofπ(χ) from Lemma 1, there existsf1 ∈ π(χ) with support in
Gl(2, k) Gl(2,A)+, f2 ∈ π(χ)∨ andf ∈ π such thatT (π(χ) ⊗ π(χ)∨ ⊗
π)(f1 ⊗ f2 ⊗ f) 6= 0. Hence,∫

A× Gl(2,k)\ Gl(2,A)
f1 (g)f2(g)f(g)ωE/k(det(g)) dg

=
∫

A× Gl(2,k)\ Gl(2,k)Gl(2,A)+
f1(g)f2(g)f(g) dg

=
∫

A× Gl(2,k)\ Gl(2,A)
f1(g)f2(g)f(g) dg

6= 0 .

This completes the proof.ut
Now we prove the main result of this section.

Theorem 2. LetD be a quaternion algebra defined overk, and let% be
an infinite dimensional cuspidal automorphic representation ofD(A)×
with trivial central character. Letπ = JL(%). Suppose that there exists
a quadratic extensionE contained inD such that for all placesv of k,
HomE×

v
(%v,1) 6= 0. LetGal(E/k) = {1, γ}. Then

L(1/2, π)L(1/2, π ⊗C ωE/k) 6= 0

if and only if there exists a Hecke characterχ of A×
E that does not factor

throughNE
k such that

T (π(χ)⊗ π(χ)∨ ⊗ π) 6= 0.
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Moreover, supposeS is a finite set of places ofk which stay prime inE, and
αv for v ∈ S are characters ofE×

v such thatHomE×
v
(%v, αv) 6= 0 for all

v ∈ S. Then we may assume that in the previous statement(χv◦γ)/χv = αv
for v ∈ S.

It is clear that if the statement in Theorem 2 involvingχ holds forχ, then
it holds forχ(β ◦NE

k ), whereβ is a Hecke character ofA×.

Proof. Assume thatL(1/2, π)L(1/2, π⊗CωE/k) 6= 0. By [W3], Théor̀eme
2, it follows that ∫

A×E×\A
×
E

f(x) dx 6= 0

for somef ∈ % = JL(π). On the other hand, by an argument as in Lemma
1.4.9 of [H], there exists a Hecke characterχ of A×

E such thatχ does not
factor throughNE

k , (χv ◦ γ)/χv = αv for v ∈ S, and∫
A×E×\A

×
E

f ′(x)(χ(γ(x))χ(x)−1)−1 dx 6= 0

for somef ′ ∈ % = JL(π). By Lemma 1 withχ0 = χ−1 andχ1 = χ, we
haveT (π(χ)⊗ π(χ)∨ ⊗ π) 6= 0.

The other implication of the theorem follows from Lemma 2.ut

3. Applications to modular forms

The main result of this section is Theorem 3, a version of Theorem 2 for new
forms inSk(Γ0(p)), wherek is an even integer such thatk/2 is odd, andp
is a prime such thatp ≡ 3 (mod 4). To obtain Theorem 3 as an application
of Theorem 2, it is necessary to show locally that some trilinear forms do
not vanish on certain pure tensors composed of a combination of new and
old vectors. In particular, we need more information than is contained in
[GP], where the case of a triple tensor product of unramified representations
or a triple tensor product of special representations is treated. To obtain the
required result, we need to generalize the description of the new vector in
a Kirillov model from [GP] to the case when the central character is not
trivial. The result on trilinear forms appears in Lemma 3, and the new vector
in a Kirillov model is described in the discussion preceding the lemma. We
begin the section by giving the straightforward application of one direction
of Theorem 1 to modular forms.

Proposition 1. Let N be a nonnegative integer, and letk be a positive
even integer. LetF ∈ Sk(Γ0(N)) be a new form. LetM be a nonnegative
integer such thatN |M , let χ be a Dirichlet character moduloM , and let
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F1 in Sk/2(Γ0(M), χ) be an eigenform forT (p) for p - M . If there exists a
divisord ofM/N such that

〈F |
(
d 0
0 1

)
k

, F1 · F1|[WM ]k/2〉Γ0(M)\H 6= 0

then

L(
k

2
, F ) 6= 0.

Proof.LetF2 = F1|[WM ]k/2 and

F ′ = F |
(
d 0
0 1

)
k

.

Let fF , fF ′ , fF1 andfF2 be the functions onGl(2,A) corresponding toF ,
F ′,F1 andF2, respectively, as in [Ge], Sect. 3.A. Note that forh ∈ Gl(2,A),
fF ′(h) = fF (hh0), where

h0 =
∏
p|d

(
d−1 0
0 1

)
p

.

Let π, σ and σ̃ be the irreducible cuspidal automorphic representations
generated byfF , fF1 andfF2 , respectively. Theñσ = σ∨. Now∫

A× Gl(2,Q)\ Gl(2,A)
fF (hh0)fF1(h)fF2(h) dh

= 〈F |
(
d 0
0 1

)
k

, F1 · F1|[WM ]k/2〉Γ0(M)\H

6= 0.

SincefF1 is in σ = σ∨ andfF2 is in σ̃ = σ, the conclusion follows from
Theorem 1 of Sect. 1 and Example 6.19 of [Ge].ut

To prove Theorem 3 we need a lemma about new vectors and trilinear
forms. Before stating the lemma we recall some definitions and results. Sup-
pose for the moment thatk is a nonarchimedean local field of characteristic
zero, with ring of integersOk. Let Pk be the prime ideal ofOk, and letπk
be a uniformizing element, i.e.,Pk = πkOk. Supposeσ ∈ Irr(Gl(2, k))
is infinite dimensional. For each nonnegative integern, let L(σ, n) be the
space off ∈ σ such thatσ(k)f = ωσ(a)f for

k =
(
a b
c d

)
∈ Γ0(n) = {

(
a b
c d

)
∈ Gl(2,Ok) : c ≡ 0 (mod Pn

k)}.

It is well known thatL(σ, n) 6= 0 for somen and that for the smallest suchn,
the conductorc(σ) of σ, dimC L(σ, n) = 1. We call any nonzero vector in
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L(σ, c(σ)) a new vector ofσ. It is easy to see that iff ∈ L(σ, n) is nonzero,
then there exists a nonzerof∨ ∈ L(σ∨, n) such that〈f, f∨〉 6= 0, where
〈 , 〉 is the canonical pairing betweenσ andσ∨. In particular,c(σ) = c(σ∨).
New vectors can be explicitly described in the Kirillov modelK(σ, ψ) of
σ with respect to a nontrivial additive characterψ of k. Assume that the
conductor ofψ is Ok. If σ is supercuspidal, then by [S2],f1 = ωσχO×

k
is a

new vector inK(σ, ψ). If σ is the irreducible principal series representation
π(µ1, µ2), then a new vectorf1 is given by the following formulas:

f1(x) =




χOk
(x)|x|1/2µ1(x)µ2(x)

val(x)∑
n=0

µ1(πk)n−val(x)µ2(πk)−n

if c(µ1) = c(µ2) = 0,

µ2(x)χOk
(x)|x|1/2 if c(µ1) = 0, c(µ2) > 0,

µ1(x)χOk
(x)|x|1/2 if c(µ1) > 0, c(µ2) = 0,

µ1(x)µ2(x)χO×
k
(x) if c(µ1) > 0, c(µ2) > 0.

These formulas can be obtained using the Weil representation model for
π(µ1, µ2), for example. Using a trick, we can also describe a new vector in
the model forσ∨ which has as underlying spaceK(σ, ψ) and action defined
by σ′(g) = ωσ(det(g))−1σ(g). Let

g0 =
(

0 π−c(σ)
k

1 0

)
.

Then a computation shows thatf2 = σ(g0)f1 is a new vector for(σ′,K(σ,
ψ)). Recall that by [Go], p. 1.22, the map(σ′,K(σ, ψ))→ (σ∨,K(σ∨, ψ))
that sendsf to ω−1

σ f is an isomorphism ofGl(2, k) representations. It fol-
lows thatω−1

σ f2 is a new vector in(σ∨,K(σ∨, ψ)). Using our explicit de-
scription, we find that there is a nonzero constantc ∈ C× such that ifσ is
supercuspidal representation thenf2 = cχO×

k
, and if σ is the irreducible

principal series representationπ(µ1, µ2), then

f2(x) = c ·




χOk
(x)|x|1/2

val(x)∑
n=0

µ1(πk)−n+val(x)µ2(πk)n

if c(µ1) = c(µ2) = 0,

µ1(x)χOk
(x)|x|1/2 if c(µ1) = 0, c(µ2) > 0,

µ2(x)χOk
(x)|x|1/2 if c(µ1) > 0, c(µ2) = 0,

χO×
k
(x) if c(µ1) > 0, c(µ2) > 0.

For information about trilinear forms, see [P]. The following result
should be compared to Propositions 6.1 and 6.3 of [GP].
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Lemma 3. Letk be a nonarchimedean local field. Letσ, π ∈ Irr(Gl(2, k)),
with ωπ = 1. Let f1 ∈ σ and f2 ∈ σ∨ be new vectors. Ifσ is either
supercuspidal or an element of the continuous series, and there exists an
unramified characterµ of k× such thatπ = π(µ, µ−1), then there exist
T ∈ HomGl(2,k)(σ⊗ σ∨ ⊗ π,1) andf ∈ π fixed underΓ0(c(σ)) such that

T (f1 ⊗ f2 ⊗ f) 6= 0.

Proof. By our remark concerning pairing of vectors inL(π, n) andL(π∨, n)
it suffices to construct an element ofHomGl(2,k)(σ⊗σ∨, π∨) that is nonzero
onf1 ⊗ f2. By Frobenius reciprocity,

HomGl(2,k)(σ ⊗ σ∨, ρ(µ, µ−1)) = HomB(σ ⊗ σ∨, α),

whereα is the quasi-character of the Borel subgroupB defined by

α

(
t1 x
0 t2

)
= µ(t1)µ(t2)−1|t1/t2|1/2.

To prove the lemma it suffices to produce an elementLofHomB(σ⊗Cσ
∨, α)

such thatL(f1 ⊗ f2) 6= 0. We will use the Kirillov model ofσ and the
model(σ′,K(σ, ψ)) forσ∨ from the paragraph preceding the lemma. Define
L : σ ⊗ σ∨ → α by

L(f ⊗ f ′) =
∫
k×
f(x)f ′(−x)ωσ(x)−1µ(x)−1|x|−1/2 d×x.

It is easy to check that this integral always converges, and defines aB map.
Using the descriptions off1 andf2 from above, a computation shows that
L(f1 ⊗ f2) 6= 0. ut

To state Theorem 3, we need some notation. LetE be an imaginary
quadratic extension ofQ, and letχ be a Hecke character ofA×

E that does
not factor throughNE

Q . We letM(χ) be the conductor ofπ(χ). We say that
χ is of modular form type ifπ(χ)∞ is of modular form type. An element
π ∈ Irr(Gl(2,R)) is of modular form type if and only if there exists a
positive integerl such that ifl = 1 thenπ = π(1, sign), and if l > 1, then

π =

{
σ(| |(l−1)/2, | |−(l−1)/2) if l is even,

σ(| |(l−1)/2, | |−(l−1)/2sign) if l is odd.

Here, the notation is as in [Ge]. The terminology is motivated by the fol-
lowing facts. If for some positivel, nonnegative integerN , and Dirichlet
characterψ moduloN , F ∈ Sl(Γ0(N), ψ) is a nonzero new form, and
π = ⊗vπv is the irreducible cuspidal automorphic representation associ-
ated toF , thenπ∞ is as above. Conversely, ifπ = ⊗vπv is an irreducible
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cuspidal automorphic representation ofGl(2,A), andπ∞ is of modular form
type and as described as above, thenπ canonically induces a new form in
Sl(Γ0(N), ψ), whereN is the conductor ofπ, andψ is related to the central
character ofπ. For more, see Lemma 5.16 and the discussion in Sect. C of
[Ge]. Letχ∞(z) = zmzn(zz)r, wherem andn are nonnegative integers,
with at most one nonzero, andr ∈ C. Thenχ is of modular form type if and
only if there exists a positive integerl such that

m+ n = l − 1, r = −(l − 1)
2

.

See [Ge], Remark 7.7.

Theorem 3. Let p be a prime such thatp ≡ 3 (mod 4), and letk be an
even positive integer such thatk/2 is odd. LetF ∈ Sk(Γ0(p)) be a new
form. LetS be a finite set of primes ofQ not includingp and∞ that do not
split in E = Q(

√−p), and letαq, q ∈ S, be a collection of characters of
E×
q that are trivial onQ×

q . LetGal(E/Q) = {1, γ}. Then

L(
k

2
, F )L(

k

2
, F,

(
p

)
) 6= 0,

if and only if there exists a Hecke characterχ of A×
E of modular form type

that does not factor throughNE
Q and a positive integerd such thatp divides

M = M(χ) exactly,χp is unramified,(χq ◦ γ)/χq = αq for q ∈ S,
χ∞(z) = zk/2−1(zz)(1−k/2)/2, d|(M/p) and

〈F |
(
d 0
0 1

)
k

, F1 · F1|[WM ]k/2〉Γ0(M)\H 6= 0,

whereF1 is the new form of weightk/2 and levelM associated toχ, as in
the preceding discussion.

Proof. Let π be the irreducible cuspidal automorphic representation of
Gl(2,A) associated toF as in [Ge], Proposition 5.21. Then the product from
the statement of the theorem does not vanish if and only ifL(1/2, π)L(1/2,
π ⊗ ωE/Q) 6= 0.

Assume thatL(1/2, π)L(1/2, π ⊗ ωE/Q) 6= 0. SinceL(1/2, π) 6= 0,
it follows thatε(1/2, π) = 1. By Theorem 6.15 and Theorem 6.16 of [Ge],
it follows thatε(1/2, πp) = −1; here, and in the following, theε-factor at
the placev of Q is defined with respect to the standard additive character of
Qv. Now πp = Sp⊗η where whereη is an unramified character such that
η2 = 1; see [GP], Lemma 4.1. Sinceε(1/2, πp) = −1 it follows thatη = 1.
Now letD be the quaternion algebra overQ ramified at exactlyp and∞. By
[V], E is contained inD. For an explicit description ofD, see [S2]. Sinceπp
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andπ∞ are in the discrete series, it follows thatJL(π) 6= 0; let % = JL(π).
Since%p = 1, we haveHomE×

p
(%p,1) 6= 0. By [W1], HomE×

q
(%q,1) 6= 0

for all q < ∞, q 6= p. Sincek is even,π∞ = σ(| |(k−1)/2, | |−(k−1)/2), in
the notation of [Ge], p.58. Hence, by p. 142 of [Ge],%∞ = N(2−k)/2 ρk−2.
IdentifyingE∞ with C, it is easy to see that

%∞|E×∞ =
k−2⊕
i=0

zi+(2−k)/2z−i−(2−k)/2.

It follows thatHomE×∞(%∞,1) 6= 0.
Now we apply Theorem 2. In addition to theαq for q ∈ S, let αp = 1

andα∞(z) = z−(k/2−1)zk/2−1. Then by%p = 1, the characterization of
%∞, and for example, Theorem 1.4.4 of [H],

HomE×
v
(%v, αv) 6= 0

for v ∈ S ∪ {p,∞}. By Theorem 2, it now follows that there is a Hecke
characterχ of A×

E that does not factor throughNE
Q such that(χv ◦ γ)/χv =

αv for v ∈ S∪{p,∞} andT (σ⊗σ∨⊗π) 6= 0, whereσ = π(χ). Letm and
n be nonnegative integers with at most one nonzero and letr ∈ C be such
thatχ∞(z) = zmz̄n(zz̄)r for z ∈ C×. Since(χ∞◦γ)/χ∞ = α∞, it follows
thatm = k/2− 1 andn = 0. Also, sinceαp = 1, χp factors throughNEp

Qp
.

By the comment after Theorem 2, we may replaceχ by χ(β ◦NE
Q) for any

Hecke characterβ of A×
Q. It follows that we may assume thatχp = µ ◦NEp

Qp

for some unramified characterµ of Q×
p , andχ∞(z) = zk/2−1(zz)(1−k/2)/2.

To show how the nonvanishing of the trilinear form gives the nonva-
nishing of the inner product from the statement of the theorem we be-
gin with some notation and observations. We have thatσ∞ = σ∨∞ =
σ(| |(k/2−1)/2, | |−(k/2−1)/2sign) if k > 1 andσ∞ = σ∨∞ = π(1, sign)
if k = 1. For each finite primeq of Q, let f1,q ∈ σq andf2,q ∈ σ∨

q be
new vectors, and letf1,∞ ∈ σ∞ andf2,∞ ∈ σ∨∞ be nonzero vectors of
weightk/2. Let f1 = ⊗vf1,v andf2 = ⊗vf2,v. Thenf1 ∈ σ∨ andf2 ∈ σ.
Moreover,f1 is a nonzero multiple of⊗qf2,q ⊗ f ′

2,∞ andf2 is a nonzero
multiple of ⊗qf1,q ⊗ f ′

1,∞, wheref ′
1,∞ andf ′

2,∞ are nonzero vectors of
weight−k/2 in σ∞ andσ∨∞, respectively. LetM be the conductor ofσ,
i.e.,M =

∏
q q

c(σq). Note that sinceσp = π(µ, µωEp/Qp
), c(σp) = 1, and

p dividesM exactly. Define a Dirichlet characterα : (Z/MZ)× → C×
byα(a) =

∏
q|M ωσ,q(a). LetF1 ∈ Sk/2(Γ0(M), α) correspond tof1, i.e.,

defineF1 byF1(g · i) = f1(g∞)j(g, i)k/2. LetF ′ = F1|[WM ]k/2. Consider
fF ′ . As in the proof of Proposition 1, the space generated byfF ′ is σ∨, and
fF ′ is a nonzero multiple off2. It follows that if F2 ∈ Sk/2(Γ0(M), α−1)
corresponds tof2, thenF ′ is a nonzero multiple ofF2.
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We now claim that there existsf ′ = ⊗vf ′
v ∈ π such that for all finite

primesq of Q, f ′
q ∈ L(πq, c(σq)), f ′∞ is a vector of weightk, andT (f2 ⊗

f1⊗f ′) 6= 0. By [P], for all placesv of Q we havedimC HomGl(2,Qv)(σv⊗
σ∨
v ⊗ πv,1) ≤ 1. Thus, to prove our claim it suffices to show that for

each finite placeq there existTq ∈ HomGl(2,Qq)(σq ⊗ σ∨
q ⊗ πq,1) and

f ′
q ∈ L(πq, c(σq)) such thatTq(f1,q ⊗ f2,q ⊗ f ′

q) 6= 0, and there exist
T∞ ∈ HomGl(2,Q∞)(σ∞ ⊗ σ∨∞ ⊗ π,1) andf ′′ ∈ π∞ of weight k such
thatT∞(f ′

1,∞ ⊗ f ′
2,∞ ⊗ f ′′) 6= 0. For q 6= p this follows from Lemma 3.

Forp and∞ we argue as follows. SinceF1 · F1|[WM ]k/2 ∈ Sk(Γ0(M)) is
nonzero, there existsG ∈ Sk(Γ0(M)) that is an eigenform for the Hecke
operatorsT (q) for q - M and

〈G,F1 · F1|[WM ]k/2〉 6= 0.

The cuspidal automorphic representationπ′ generated byfG is irreducible,
π′∞ = π∞, and sinceπ′ has trivial central character andp dividesM exactly,
π′
p = πp = Sp. Moreover, the nonvanishing of the last inner product implies

the nonvanishing of∫
A× Gl(2,Q)\ Gl(2,A)

f2(g)f1(g)fG(g) dg,

which implies the conditions forp and∞.
Next, we defined. For each finite primeq of Q let fq be a new vector for

πq, and letf∞ be a nonzero vector of weightk in π∞. Let f = ⊗vfv. We
may assume thatfF = f . Let q be a finite prime ofQ. It is well known that
L(πq, c(σq)) is spanned by the vectors

fq, πq

(
q−1 0
0 1

)
fq, . . . , πq

(
q−c(σq)+c(πq) 0

0 1

)
fq.

By writing eachf ′
q as linear combination of these vectors, it follows that we

may assume that eachf ′
q is of the form

f ′
q = πq

(
q−jq 0
0 1

)
fq,

where0 ≤ jq ≤ c(σq) − c(πq). Thus, we may assume thatf ′ = π(h0)f ,
where

h0 =
∏
q|d

(
d−1 0
0 1

)
q

,

andd =
∏
q q

jq . As c(πp) = c(Sp) = 1, p - d, andd|(M/p).
The nonvanishing ofT (f2 ⊗ f1 ⊗ f ′) now implies the nonvanishing of

the inner product from the theorem.
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Finally Lemma 2, combined with an argument as in the proof of Proposi-
tion 1, shows that ifχ as in the theorem exists, then the product ofL-values
from the theorem does not vanish.ut
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