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Let £ be a number field with ring of adelds let B be a quaternion algebra
defined ovek;, and letG = B*. Letr be aninfinite dimensional irreducible
cuspidal automorphic representation(®fA ). Then the vanishing or non-
vanishing ofL(1/2, ) has been conjectured or shown to be equivalent to
conditions of considerable interest in number theory or automorphic repre-
sentation theory. For example kif= Q, B = Msyyo andx corresponds to
an elliptic curveF defined ovef), then Birch and Swinnerton-Dyer conjec-
tured that the order of vanishing éf s, =) at1/2 is the rank of the torsion
free part of E(Q). To take another example, if the central charactet of
is trivial, then Waldspurger showed in [W1] and [W2] that the nonvanish-
ing of L(1/2, ) is equivalent to the nonvanishing of the theta liftzofo
Mp(2, A), the metaplectic cover ¢fl(2, A). In this paper, again when the
central character of is trivial, we show how another condition is related
to the nonvanishing of.(1/2, 7). We also consider the implications of our
results for modular forms.

Our first main result relates the nonvanishingldfl /2, 7) to the exis-
tence of another irreducible cuspidal automorphic representaibii (A )
along with an embedding of in 0 ® ¢". For a precise account we need
some notation. I& is an infinite dimensional irreducible cuspidal automor-
phic representation d¥(A), define the trilinear form

Tloro' @m):0R0”" @1 — C
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For the remainder of this introduction, assume that the central charaater of

is trivial. In Theorem 1 we prove that if there exists an infinite dimensional
irreducible cuspidal automorphic representatiasf G(A) such that'(c ®

oV ®m) # 0,thenL(1/2,7) # 0. We also show that the converse holds

in the case= # Gl(2). To prove Theorem 1, we use the above mentioned
criterion of Waldspurger and theta correspondences in the form of certain
seesaw pairs. Theorem 1 is proven in Sect. 1. In Sect.1 we also discuss
some possible similar results and the connection of Theorem 1 to the Jacquet
conjecture.

In the casez = GI(2), the first part of Theorem 1 has a consequence
for modular forms. As an illustration of the more general result of Sect. 3,
suppose thalV is a honnegative integek, is a positive even integer and
I € Sy 2(Io(N)) is an eigenform of the Hecke operat@ré) for p { V.
ThenF? € S, (I'h(N)). The above result implies that#f € Si(IH(N)) is
anew form andF, F£) r, (v # 0 thenL(k/2, F) # 0.

Under some hypotheses, in the cése- G1(2), our second main result
gives a necessary and sufficient conditionfor 7 (y) @ w(x)") # 0 for
somey, wherey is a Hecke character of a quadratic extengibaf k that
does notfactorthrougNkE, andr(x) isthe irreducible cuspidal automorphic
representation o61(2, A) associated tgc. Suppose such g exists. By
Theorem 1, we havé(1/2, ) # 0. Using Theorem 1 again, we show that
L(1/2,m®wg,) # 0. See Lemma 2. We prove in Theorem 2 that for many
m, these two necessary conditions are also sufficient. To prove this result,
we use another seesaw. See Lemma 1. By this lemma, our trilinear form is
related to the product of two integrals ovet E*\ A %. These integrals can
be analyzed using the main result of [W3], and an idea from [H]. This result
is described in Sect. 2.

Our final main result applies Theorem 2 to modular forms. The key step
in making the transition from the abstract situation of Theorem 2 to modular
forms is to show that the local trilinear forms do not vanish on certain pure
tensors formed from a combination of new and old vectors. In particular, we
need more information than is contained in [GP], where the case of a triple
tensor product of unramified representations or a triple tensor product of
special representations is treated. We also need to generalize the description
of the new vector in a Kirillov model from [GP] to the case when the central
character is not trivial. The result on trilinear forms appears in Lemma 3, and
the new vector in a Kirillov model is described in the discussion preceding
the lemma.
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We will use the following notation and definitions. Given a topologi-
cal group, a character of the group is a continuous homomorphism from the
group toC*, and the trivial character of the group is denoted byhrough-
out the paperk is a number field, with group of adelés B is quaternion
algebra defined ovet, andG = B*. The notation for trilinear forms will
be as above. Letbe a place ok, and letr be anirreducible admissible rep-
resentation o7 (k, ) or an irreducible cuspidal automorphic representation
of G(A). The central character afwill be denoted byv,, and the contra-
gredient ofr by 7V. If 7 is an infinite dimensional irreducible cuspidal au-
tomorphic representation 6f(A), let JL() be the the infinite dimensional
irreducible cuspidal automorphic representatiorGdf2, A) associated to
m by the Jacquet-Langlands correspondence, as in Theorem 10.5 of [Ge].
If 7 is an irreducible cuspidal automorphic representatioG1g2, A), and
7 lies in the Jacquet-Langlands correspondence with resp&gt49, let
JL(7) be the associated infinite dimensional irreducible cuspidal automor-
phic representation af(A); otherwise, let’iL(7) = 0. If 7 is an infinite
dimensional irreducible cuspidal automorphic representatiaf(4f), then
L(s,)isdefinedto bd.(s, JL(x)). Let E be a quadratic extension bfWe
denote the nontrivial Hecke characterof that is trivial onk> Nf (A 5)
by wg /i If x is a Hecke character a@f ;. that does not factor throughiZ,
thenr(x) is the irreducible cuspidal automorphic representatigal(2, A )
associated tq as in Theorem 7.11 of [Ge]. IF' is a nonarchimedean local
field, thenSp is the special representation@f(2, F'), i.e., the irreducible
quotient ofp(| |~/2, ] |'/2); the last representation is defined as in [Ge]. If
D is a quaternion algebra, the canonical involutiorDodvill be denoted by
+ and the reduced norid and tracel of D are defined bW(x) = zz* and
T(x) = z+z*. Let(U, (, )) beanonzero, nondegenerate finite dimensional
symmetric or symplectic bilinear space over a figélahot of characteristic
two. An F' linear mapT : U — U is called a similitude if there exists
A € F* such that(Tu, Tu') = A(u,u’) for u,u’ € U; in this case\ is
uniquely determined, and we writg7') = \. We denote the group of all
similitudes byGO(U) or GSp(U), depending on whethéf is symmetric
or symplectic, respectively. I/ is symmetric and of dimensiobn, then
we denote the subgroup Gf € GO(U) such thatdet(T") = A(T)" by
GSO(U). The notation for modular forms will be as in [Sh]. FinallyAf
is a positive integer, we let

0 -1
Wi = (M 5 ) |
In preparing this work, | benefited from some discussions with F. Rodri-
guez-Villegas. The idea of using the seesaw of Lemma 1 to obtain this result

was told to me by D. Prasad. | also thank the referee for useful comments
and corrections.
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1. The general case

In this section we prove Theorem 1. At the end of the section we make some
remarks about the proof and possible analogous results. We also discuss the
relationship between Theorem 1 and the Jacquet conjecture.

To prove Theorem 1 we will use a certain seesaw from the theory of
the theta correspondence. For an outline of the global theory of the theta
correspondence for isometries and similitudes, the reader can consult [HPS]
and Sect. 2 of [HST], respectively. For more about seesaws, see [K].

Theorem 1. Let 7 be an infinite dimensional irreducible cuspidal auto-
morphic representation @¥ (A ) with trivial central character. If there there
exists an infinite dimensional irreducible cuspidal automorphic represen-
tation o of G(A) such thatT'(c ® ¢V @ ) # 0, thenL(1/2,7) # 0.
Conversely, ifL.(1/2,7) # 0 andG # Gl(2), then there exists an infinite
dimensional irreducible cuspidal automorphic representationf G(A)
suchthatl'(c @ ¢V @ ) # 0.

Proof. To define the seesaw used in the proofXdie the symmetric bilinear
space defined ovérwith underlying spacd? and symmetric bilinear form

(, ) corresponding te- N, whereN the reduced norm aB. Let X, be the
subspace ok of elements: such thatt* = z, and letX; be the subspace of
X of trace zero elements. Then there is an orthogonal decompogitien
Xo L X;7.LetY be the nondegenerate two dimensional symplectic bilinear
space ovek. We write S1(2) = Sp(Y') andGl(2) = GSp(Y). Consider
the symplectic spacdd” = X Y, Wy = Xo @Y andW; = X1 QY
defined overk. Via the obvious inclusiong,0(X), SI(2)) is a dual pair

in Sp(W). Via the inclusion coming from the orthogonal decomposition
W =Wy L Wy, (O(Xp) x O(X7),81(2) x S1(2)) is also a dual pair in
Sp(W). SinceSl1(2) is contained inS1(2) x S1(2) and O(Xy) x O(Xy)

is contained inO(X), our two dual pairs are seesaw dual pairs, which is
illustrated by the diagram:

S1(2) x S1(2) O(X)
T X T .
SI1(2) O(Xo) x O(X1)

Let ¢ be the projection of the metaplectic groMip(W (A)) ontoSp(W
(A)). Since the dimension of is even, it follows that the inverse images of
SI(2,A) andO(X (A)) in Mp(W (A)) are split. It follows that the inverse
image ofO(Xp(A)) x O(X1(A)) is also split. However, the inverse image
of SI(2, A) x S1(2,A) is not split.

In addition, consider the dual paif®(Xy), S1(2)) in Sp(Wp) and (O
(X1),S1(2)) in Sp(W1). The inverse images @ (X, (A)) andO(X;(A))
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are split, while those o$1(2, A) are commonly isomorphic tdIp(2, A).
Moreover, there is an epimorphigmof Mp(2, A) x Mp(2, A) ontog—!(SI
(2,A) x SI(2,A)) such that the following diagram commutes:

Mp(2,A) x Mp(2,A) —2— ¢~ 1(S1(2,A) x S1(2,A))

! l

SI(2,A) x SI(2,A)  —<5  SI(2,A) x SI(2,A)

Here, the vertical maps are projections.
We can summarize the situation by the following diagram:

Mp(2,A) x Mp(2,A)

5 1(S1(2,A) x S1(2,A)) O(X(A))
) X T
S1(2, A) O(Xo(A)) x O(X1(A))

Next, we define the representations that will be used to construct our theta
lifts. Fix a nontrivial additive unitary characterof A /k. Fix a symplectic
basise, f for Y. Fix a basiseg = 1 for X, and fix an orthogonal basis
e1, e, e3 for Xq. Theney, .. ., ez is an orthogonal basis foY, and

1 1
epRe, ..., ——es3®e, e f,...,e3 f
(eo, €0) (e3,e3)
is a symplectic basis folV. This basis also contains obvious symplec-
tic bases forlWy and ;. As usual, the above basis foV determines
a complete polarization dff’, and we have an identification of the Lan-
grangian spanned by ® f,...,es ® f with X. Similar comments apply
to Wy andWy. Let (ro, L2(Xo(A))), (r1, L>(X1(A))) and(r, L2(X (A)))
be the Schidinger models of the Weil representationshab(Wy(A)),
Mp(W1(A)) and Mp(W (A)) defined with respect t@), and the above
symplectic bases, respectively [Rao]. Denote the compositiewith the
natural maps of 1 (S1(2, A) x S1(2,A)) x (O(Xo(A)) x O(X1(A))) and
S1(2,A) x O(X(A)) into Mp(W(A)) by w andw’, respectively. Then the
seesaw property holds: the restrictionsx@ndw’ to S1(2, A) x (O(Xp(A))
x O(X1(A))) are identical. In addition, we have a decompositiow oDe-
note the composition ofy andr; with the natural maps o¥p(2, A) x
O(Xp(A)) into Mp(Wy(A)) andMp(2, A) x O(X;(A)) into Mp(W7(A))
by wg andwy, respectively. Then the map from the tensor product of Hilbert
spaces.?(X(A)) ®@c L*(X1(A)) to L?(X (A)) determined by mapping
w0 ® @1 10 @ With p(x0 © x1) = wo(xo)e1(z1) is an isomorphism of
vector spaces such that

w(p(g0, 91), (ho, h1))p(zo & 1) = wolgo, ho)po(wo)wi (g1, h1)er1(x1)
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forpo®pr € L*(Xo(A))@c L*(X1(A)), (90, 91) € Mp(2, A) xMp(2, A)
and(hg, h1) € O(Xo(A)) x O(X1(A)).

In fact, to define the theta lifts we will use certain subspaces of smooth
vectors. Ifv is a finite place oft let S(X (k,)) be theC subspace of
L?(X (k,)) of locally constant, compactly supported functions: I§ real,
let S(X (ky)) be the subspace of functions of the form

p(zo,...,23) exp(—‘;’(wg 4o 4 23))
wherep is a polynomial in four variables witly coefficients, and), (x) =
exp(icz); this is the subspace corresponding to the polynomials in the Fock
model of the Weil representation dip(W (k,)) [A]. If v is complex we
make a similar definition. LeS (X (A)) be the restricted direct product of the
S(X (ky)). Similar definitions hold fof#, and¥;. We note that under the
above isomorphism, the ordinary tensor prodsicK,(A)) ®c S(X1(A))
is mapped ont& (X (A)).

We define the appropriate theta kernels. oe S(X(A)), (¢/,h') €
S1(2,A) x O(X (A)) and(g, k) € ¢ 1(S1(2, A) x S1(2, A)) x (O(Xp(A)) x
O(X1(A))) let

0(g,hio)= > wlg,h)p(z), 0(g W)=Y (¢ ,h)p(x).
zeX (k) zeX (k)

If (g,h) = (¢',h)isinS1(2, A)x (O(Xo(A))xO(X1(A))), these functions
clearly agree. Fopy € S(Xo(A)), p1 € S(X1(A)), g € Mp(2,A), hg €
O(Xo(A)) andh; € O(X1(A)) let

0(g,ho;00) = > wolg, ho)go(z) ,
z€Xo (k)

0(g:hisn) = Y wilg,h)pi(x) .
IEXl(k‘)

If 0o € S(Xo(A)), 1 € S(X1(A)), 90,91 € Mp(2,A), hg € O(Xo(A)),
hi1 € O(X1(A)), andp € S(X(A)) corresponds tgy ® ¢4, then

0(p(g0, 91), (ho, h1); ©) = 0(go, ho; w0)0(g1, h1; ©1) -

There is a characterization of the right hand side of the above diagram that
we will use. We have the following commutative diagram:

GSO(X(A)) +——— (G(A) x G(A))/A>

| I

SO(X1(A)) 2 SO(Xo(A)) x SO(X1(A)) «~—  G(A)/A*
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Here, the top map is defined g, ¢')r = gxg’~!, the bottom map is
defined byp(g)z = gzg~!, and the second vertical map take® (g, g);
note thatSO(X(A)) is trivial.

Next, we recall the theta correspondences and seesaw identity associated
to our situation. Fix a8O (X (A)) rightinvariant measure d$0 (X1 (k))\
SO(X1(A)). Let f € 7 and lety € S(X(A)). Let f be the function
on SO(Xp(A)) x SO(X1(A)) such thatf o p = f. Defined(f,y) on
g (S1(2,A) x SI(2,A)) by

0(f,¢)(g) = 0(g, (1,h1);¢)f(h1) dhy.

/SO(X1(’€))\ SO(X1(4))

If » corresponds tgy ® ¢1 € S(Xo(A)) ®c S(X1(A)), and(go,g1) €
Mp(2,A) x Mp(2,A) then

0(f,¢)(p(90,91)) = 0(g0, 1;00)0(f, 1) (g1),

whered(f, 1) is the theta lift defined in [W1], p. 25, and denoted there by
Ty (41,01, f) for the additive charactef’ defined by’ () = ¢(z/2).

The second theta correspondence will require some more notation. By
[HK1], the representation’ extends to a representation of the group

R'(A) = {(g,h) € GI(2,A) x GO(X(A)) : det(g) = A(h)}.

See also [R1]. Here\(h) is the similitude factor oh € GO(X (A)). With
the aid of the extended representation we can lift representatiGisfA ).
FixarightS1(2, A) invariantmeasure d$i(2, k)\ S1(2, A). Define, as above,
0(g, h;p) for (g,h) € R'(A) andy € S(X(A)). Suppose that is an
irreducible cuspidal automorphic representationGd2, A). Let f/ € 1
andyp € S(X(A)). Defined(f’, ) onGSO(X (A)) by

0(f' p)(h) = / 0(919', 1) f'(919) dgi-
S1(2,k)\ S1(2,A)

Here,¢' € GI(2,A) is such thatdet(¢’) = A(h). Note that forh €
SO(X(A)), 0(f',»)(h) is the same as the usual theta lift/0f regarded as
a cusp form orbl1(2, A), with respect tap. Let §(7) be theC vector space
spanned by the functior f/, ») for f/ € 7 andy € S(X(A)). Then
O(t)op={Fop:F cf(r)}istheC vector space spanned by the func-
tionsf1 ® fo, wheref; € JL(7)andf, € JL(7)V, andf; ® f2 is the function
on (G(A) x G(A))/A* defined by(f1 ® f2)(g1,92) = fi(g1) f2(g2). For
details, see [H] and [S1].

To state the seesaw identity for theta lifts,#dde an irreducible cuspidal
automorphic representation @f(2, A). Because our dual pairs form a see-
saw, if7 is an irreducible cuspidal automorphic representatio@lgg, A),
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then we have

(f.0(f, 0))si) = (F.0(f',©))soxn)
for f e m, f' € 7,andp € S(X(A)). Here,

(f',0(f,¢))s12) =

/ F(9)0(f.¢)(g)dg,
S1(2,k)\ S1(2,A)

and(f, O(f',¢))so(x,) is similarly defined. Before beginning the proof, we
give a simplified diagram which summarizes our notation.

0(f; ) S1(2) ? S1(2) O(TX) 0(f'p)eo®a”
X .
fler  SI2) 0(Xo) x O(X1) fem

Now assume that there exists an infinite dimensional irreducible auto-
morphic representation of G(A) such thatT'(c ® ¢ ® w) # 0. Let
T=T(c®c"@m). ThenT(f; ® fo @ f) # 0 for somef; € o, fo € 0¥
and f € w. From above, we can writ§, ® f, as a linear combination of
functionsé(f’, ¢) o p, wheref’ € 7 = JL(o) andy € S(X(A)). From
T(fi ® f2 ® f) # 0 it follows that there exisf’ € 7 andyp € S(X(A))
suchthat f,0(f', p)op)c # 0. Here, the integral is ovex* G(k)\G(A) =
SO(X1(k))\ SO(X1(A)). Now:

(£, 0, 9) 0 p)c = (fop.0(f',0) 0 p)c
= (f,0(f",¢))so(x1)

= (", 0(f,¢))s12)-

Since(f, 0(f', ¢)op)c # 0, we haved(f, ¢) # 0. It follows thatt(f, ¢) #
0 for somey = g ® 1 € S(Xo(A)) ®c S(X1(A)). Henceh(f, 1) # 0.
By [W1], Théoeme 1, and [W2], Proposition 22, this implies thaf /2, 7)
# 0.

Next, assume thak(1/2,7) # 0 andG # Gl(2), so thatB(k) is a
division algebra. Lef € mandy € S(X(A)). Assumethap = po®¢; €
S(Xo(A)) ®c S(X1(A)). We first show thal(f, ¢)|si(2,4) is @ cusp form.
Let g € SI(2,A), and let(go, g1) € Mp(2,A) x Mp(2,A) be such that
p(g0,91) = g, Wheregisregarded as an elementof! (S1(2, A) x SI(2, A)).
A computation shows that

0.0} = 3 colon Do)
z€Xo (k)
W(er, g1, f, —(z,2))

== Zw0(907 I)QOO(G : l)W((Pl,gh f~7 a’2)7
ack

K\A
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where, as in [W1],

Wieran fot) = [ oFen((y ) 0w -myan

k\A

for t € k. We assert thallV' (o1, g1, f,a%) = 0 for all g € Mp(2,A) and
a € k. If a = 0, this follows as in [W1], p. 30. Since for &}, € Mp(2, A)
anda € k%,

0 ) 71>917f~7 1),

~ a
W(@hgla f7 CL2) = W(@la (<0 CL_l
it now suffices to show that’ (¢4, g1, 1, 1) =0for g1 € Mp(2,A). Asin
[W1], p. 29, forg; € Mp(2, A),

W(Sohglv f? 1) = /
SO(X1(k))\ SO(X1(A))

> wig1, h)gr (@) f(h1) dhi.

zeX1(k), (z,x)=1

SinceB(k) is adivision algebra, there existmoe X (k) suchthatz, z) =
1, and our claim follows.

SinceL(1/2, ) # 0, again by [W2], there exist € 7, 1 € S(X1(A))
andg; € Mp(2,A) sothatd(f, ¢1)(g1) # 0. There existgpy € S(Xo(A))
andgo € Mp(2, A) such thap(go, g1) € i(S1(2,A)) andf(go, 1; o) # 0.
By the last paragraph, it follows thatdf = o @ ¢1, thend(f, ¢)|si2,a) IS
anonzero cusp form d$i(2, A). Hence, there exists an infinite dimensional
irreducible automorphic cuspidal representatioof G1(2,A) and f' € 7
so that(f’, 0(f, »))si2) # 0. Since(f’,0(f, ¢))si(2) # 0 for somef’ € 7,
we have(fo p, 0(f',¢) o p)c # 0 by an identity from above. This implies
thatT (o ® ¢V ®@ 1) # 0, whereo = JL(7). This completes the proof of
Theorem1. O

We make some remarks on the proof of Theorem 1 and a possible anal-
ogous result. The argument for the second part of Theorem 1 fals=f
G1(2). In this case, we do not always haWié(¢1, g, f,1) = 0. To see this,
suppose thaB(k) is not a division algebra and that the notation is as in
proof of Theorem 1. Then by [W1], p. 30,

W(p1,g,f,1) = wi(g, h1)e1(z1)

/S(A)\ SO(X1(4))

/ f(shy) dsdhy.
S(k)\S(4)
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Here, S(k) and S(A) are the groups of elements H#O(X;(k)) and SO
(X1(A)), respectively, that fix

01
l‘1=<10>.

Now S(k) is conjugate to the image underof the subgroup ofz1(2, k)
consisting of the elements of the form

(61)

wherea € k*. As in [W1], for a proper choice of € w andh; €
SO(X1(A)), we find that

~ _ al
/S(kz)\S(A) flsha)ds = /kX\AX d (0 1) da
=L(1/2,7) .

Since we are assuming(1/2, 7) # 0, this implies that for som¢ ¢ ,
v1 € S(X1(A)) andg € Mp(2,A) we havelW (1,4, f,1) # 0.

As for the similar result, it may be possible to prove a statement analogous
to Theorem 1, with the quadratic base change of an irreducible cuspidal
automorphic representation 6f1(2,A) in place ofoc ® ¢V. This might
be obtained by replacing from the proof of Theorem 1 with a different
one dimensional symmetric bilinear space. For example, fix a quadratic
extensionk = k(v/d) of k with Galois groupGal(K/k) = {1,~}, and
consider the symmetric bilinear spakeverk with underlying vector space

X/(k):{<cf}&:g> ca€K,bcek)

and bilinear form coming from the restriction of1/d) - det. We see that
X'(k) = Xy(k) L X{(k), where againXj(k) = k- I and X{(k) is
the subspace of elements of trace zero. Ap(k) is isometric toX; (k)
from the proof of Theorem 1. HoweveX, (k) andX{,(k) are not isometric,
nor areX (k) and X'(k). The appropriate identifications of the groups of
similitudes are now given by

GSO(X'(A)) 7 (A% x GI(2,A)) /A

| I

~

SO(X/(A)) =2 SO(X/(A)) x SO(X|(A)) «=—  GI(2,A)/AX.

Here, the top map is defined byp(t, g)z = t~*gzy(g)*, the bottom map
is defined byp(g)z = gxg~!, and the second vertical map sengso
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(det(g), g). The inclusion ofd* takesw to (N (), z). With these objects
playing the role of their counterparts, there may be a development like thatin
the proof of Theorem 1. However, the theta correspondence from the proof
of Theorem 1 that involves the Jacquet-Langlands correspondence will now
involve base change t81(2, A). In the general setting, this theta correspon-
dence has not been developed as thoroughly as the one corresponding to the
Jacquet-Langlands correspondence. See, however, [C] and [R2].

Finally, we make some remarks about the connection between Theorem 1
and the Jacquet conjecture. Recall that, in our case, the Jacquet conjecture
states that ifo is an irreducible cuspidal automorphic representation of
G(A), and at every place df, the local component of embeds in the local
componentof®c", thenT (c@c" ®n) # 0ifandonly if L(1/2, JL(0)®
JL(cv)®JL(m)) # 0. The Jacquet conjecture is known in many cases. See
[HK2]. Now if o is an irreducible cuspidal automorphic representation of
G(A), then

L(s,JL(0) ® JL(c") ® JL(x)) = L(s, ) L(s,JL(7) ® JL(o),7).

Here,r is the representation of tHegroupGl(2, C) x G1(2, C) of G1(2) x

G1(2) with underlying vector spacg? ® Sym? C?, and action defined by
r(g,9') = g®(1/det ¢') Sym? ¢'. The action orC? is the standard one. As

is pointed outin [GK].L(s, JL(m)®JL(o), r)is entire. Ifthe Jacquet conjec-
tureistrue, then the first part of Theorem 1 follows from the above equality of
L-functions. Itis not clear if the second part of Theorem 1 also follows from
the assumption of the Jacquet conjecture. In addition to assuming the Jacquet
conjecture, one would needrasuch thatZ(1/2, JL(7) ® JL(o),r) # 0.

2. The case of Hecke characters

In this section we consider the case whgn= Ms, ., ando = 7 (), where

x is a Hecke character of a quadratic extendibaf k that does not factor
throughN¥, andr (y) is the irreducible cuspidal automorphic representation
of G1(2, A) associated tq. We show that for many, there exists g such
thatT'(m(x) @7 (x)" @) # 0ifand only if L(1/2, ) L(1/2, 7 @ wp /i) #

0. Using another seesaw, Lemma 1 reduces the analysis of such trilinear
forms to the investigation of some period integrals o€\ A ;. These
integrals can be understood using [W3] and an idea from [H]. The seesaws of
Theorem 1 and Lemma 1 are quite analogous and of the same general type.
However, in contrast to the seesaw in Theorem 1, in Lemma 1 the trilinear
form appears on the symplectic side of the seesaw.

Lemma 1. Let D be a quaternion algebra defined ovkrand let £ be
a quadratic extension of contained inD(k) as ak subalgebra. Let
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Gal(E/k) = {1,7}. Let xo and x; be Hecke characters ot} that do
not factor througH\IkE. Letn be an irreducible cuspidal automorphic rep-
resentation ofz1(2, A). Assume thab, xo|ax x1]|ax = 1. If

/ F1(@)x0 (@) () da
AXEX\AX
~ / Fo)x0(y) S (v(y) " dy # 0
AXEX\A%

for somef; € JL(w), fo € JL(7)V, then

T(m(x0) ® m(x1) ® 7) # 0.

Proof. The proof of the lemma will be analogous to the proof of Theorem 1.
Again, we will use a seesaw. To define the seesaw, reQarsla symmetric
bilinear spaceX with symmetric bilinear forni , ) induced by the reduced
norm of D. Let X, be the subspace &f such thatX (k) = E, and letX; be
the orthogonal complement . DefineY’, Wy, W1 andW as in the proof
of Theorem 1. We have the analogous seesaw dual (#t% ), S1(2)) and
(O(Xp) x O(X7),S1(2) x S1(2)) in Sp(W), and the same seesaw diagram.
We also have the auxiliary dual paif®(Xy), S1(2)) and (O(X3), S1(2))
in Sp(Wp) andSp (W), respectively. For the same reasons as before, the
inverse images dD(X (A)), SI(2, A) andO(X((A)) x O(X1(A)) are split;
since the dimensions df, and X are even, it also follows that the inverse
images ofO(Xy(A)) andS1(2,A) in Sp(Wy(A)) and of O(X1(A)) and
SI(2,A) in Sp(W1(A)) are split. This implies that the inverse image of
S1(2,A) x S1(2,A) in Sp(W (A)) is split.

We will use the same notation as in the proof of Theorem 1 for the Well
representations and their restrictions. However, adwa representation of
(S1(2,A) x SI(2,A)) x (O(Xp(A)) x O(X1(A))), and

w((90,91), (ho, h1))e(xo © x1) = wo(go, ho)wo(zo)wi (g1, h1)p1(w1)

for o = o @ p1 € L*(Xo(A)) @c L*(X1(A)), (g0, 91) € SI(2,A) x
S1(2, A) and(hg, h1) € O(Xo(A)) x O(X71(A)).

In fact, for the proof we will need the similitude version of the seesaw. The
similitude seesaw and identity require some more notation and observations.
First, we claim that there is a quaternion algebra badig, k = ij for D(k)
suchthalXy(k) = F = k+k-iandX; (k) = k-j+k-k = E-j. Toseethis, let
E = k+k-i,wherei? € k. Since the canonical involutionof D generates
Gal(E/k),i* = —i,and(1,i) = 0. Letx € X, (k) be nonzero. Consider the
setE’ of elements oD (k) that commute withe. Asx ¢ k, thisisk + k- x.

Now as ak algebra,E’ is either a quadratic extension bfor isomorphic
to k x k. Moreover, the restriction of generate$§;al(E’/k). Hence, there
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existsj € E’' such thatt = k + k- j, j> € kX and(1,j) = 0. Letk = ij.
Sincez € X;(k), we have(i,z) = 0, so that(i,j) = 0, i.e.,ij = —ji.
We conclude that any two distinct elements amanigj, k are orthogonal,
and hencd,1i,j,k is a basis. SincéXy(k),k -j + k- k) = 0, we have
X1(k) = k- j+ k- k. We note that sinc& (k) = F and X (k) = Ej, the
symmetric bilinear form oiX; (k) is equivalent tdN(j) times the symmetric
bilinear form onXy (k).

Using the last observation, we can identi#pO(X(A)) andGSO(X;
(A)).Fora € A%, letm(a) denote both the element @GSO (X (A)) and of
GSO(X;(A)) defined by left multiplication by:. It is well known that the
maps fromA ; to GSO (X (A)) andGSO(X1 (A)) which senditom(a) are
isomorphisms. Clearly, the similitude factofm (a)) of m(a) fora € A} is
NE(a). It follows thatA(GSO(Xo(A))) = A(GSO(X1(A))) = NE(AS).

The seesaw that we will use now is:

[GL(2, A)F x GI(2, A)T] GSO(X(A))
t 1 .
G1(2,A)* " H(A) = [GSO(X1(A)) x GSO(Xa(A))]

Here,G1(2, A)™ is the set ofy € G1(2, A) such that
det(g) € A(GSO(Xo(A))) = M(GSO(X1(A))) = N (Af)

and[G1(2, A)* x G1(2,A) "] is the subgroup of pairg, ¢') of G1(2, A)* x
GI1(2,A)* such thatdet(g) = det(g'), and H(A) = [GSO(X1(A)) x
GSO(X2(A))] is the subgroup of pairg, 1) € GSO(X(A)) x GSO(X>

(A)) such that\(h) = A(h'). At this point we may as well state an iden-
tification of the right hand side of the diagram, analogous to the one of
Theorem 1. We have a commutative diagram

~

GSO(X(A)) «—— (D(A)* x D(A)*)/A*

[ I

H(A) — (A% x A%)/A*

Here the top map is as in Theorem 1, and the bottom map is defined by
p(z,y) = (m(zy~1), m(zy(y)~1)). The vertical maps are inclusion.

As in the proof of Theorem 1, to introduce similitudes into the theta
correspondence, we will use the extended representation of [HK1R (L4t
be as in the proof of Theorem 1, and defiRg A) andR; (A) analogously.
Thenw, andw; extend to representationsBf(A) andR; (A), respectively,
just as does’. Moreover, we have

w'(g, (ho, h1)) () (zo @ x1) = wo(g, ho)po(To)wi(g, h1)e1 (1)



588 B. Roberts

for o = w0 ® g1 € L2A(Xo(A)) ®c L*(X1(A)), (9,ho) € Ro(A) and
(9,h1) € Ri(A).

Using the extended representations we define the theta lifts, and fi-
nally state the seesaw identity. We defif\g”’, ¢) on GSO(X (A)) for
ff € mandp € S(X(A)) as in the proof of Theorem1. Fix a right
SO(Xo(A)) invariant measure o8I0 (X (k))\ SO(Xo(A)). Using the iso-
morphism ofGSO (X (A)) with A}, from above, definé, onGSO(X((A))
by Fo(m(x)) = xo(z). Forpg € S(Xo(A)) defined(Fy, o) onGl(2, A)™
by

0(F1, 01)(9) = / 0(g, huhs 1) F1 (huh) dhy
SO(Xo(k))\SO(Xo(A))

whereh in GSO(X(A)) is such thatlet(g) = A(h). Forgg € S(Xo(4)),
extendd(Fo, vo) to a Gl(2, k) invariant function onGl(2, A) by setting
0(Fo, 0)(909) = 0(Fo,0)(g) for go € Gl(2,k) andg € GI(2,A)*
and lettingd(Fy, ¢o) be 0 off G1(2, k) G1(2,A)". Then the automorphic
representation of:1(2, A) generated by these functionszi$yx). Similar
notation and comments apply #6; andy;. See [HK2], Sect. 13.

An argument as in [HK1], Proposition 7.1.4, now shows that there exist
invariant measures of* G1(2, k) ™\ G1(2,A)" andA* H(k)\H (A) such
that forpg € S(Xo(A)), p1 € S(X1(A)) andf € ,

(0(F, 00)0(F1, ¢1), faz,a)y+ = (0(f, 0 @ ¢1), Fo @ F1) g

Here, the first integral is ovek™ G1(2, k)*\ G1(2,A)*, and the second
integral is ovelA* H (k)\H(A).

The lemma follows easily from this identity. Suppose that the product
of the integrals in the statement of the lemma is nonzero, i.e., there exist
f1 € JL(m) and fy € JL(m)V,

/ fi(@)xo(z)x1(z) dz
AXEX\AY
/ y fW)xoly " )xa(v(y) ) dz £0.
AXEX\AY

As was pointed out in the proof of Theoremf1 f» is alinear combination
of functionsé(f’, ¢) o p wheref’ € w andy € S(X(A)). Moreover, the
vectorspg ® @1 for pp € S(Xp(A)) andp; € S(X1(A)) spanS(X(A)). It
follows that since the last product of integrals is nonzero, for sphwe,
o € S(Xp(A)) andyp; € S(X1(A)) we have

<9(f/7 Po & Sol)a Fy® F1>H(A) 75 0.
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By the seesaw identity,

(0(Fo, 00)0(F1, 1), f)ciz,a)+ # 0.
This implies thafl'(m(xo) @ m(x1) ® ) #0. O

The next lemma proves the necessity of the condition described at the
beginning of this section.

Lemma 2. Letr be a cuspidal automorphic representatiortif2, A) with
trivial central character. Lett be a quadratic extension &f and suppose
x is a Hecke character of 5, that does not factor througNE. If

T(r(x)®7(x)" @) #0

then

Proof. Suppose that'(m(x) @ n(x)" ® m) # 0. By Theorem1 it will
suffice show that'(7(x) ® 7(x)¥ ® (7 ® wgk)) # 0. Now by the char-
acterization ofr () from Lemma 1, there exists € () with supportin
Gl1(2,k) G1(2,A)t, fo € m(x)V and f € 7 such thatl'(7(x) ® 7(x)" ®

m)(f1® fa® f) # 0. Hence,

/ 11(9) F2(9) £ (9)wp i (det(g)) dg
A% G1(2,k)\ GI(2,A)

f1(9) f2(9) f(g) dg

/AX GI(2,k)\ G1(2,k) G1(2,A)+
J1(9)f2(9) f(g) dg

£0.

This completes the proof.00

/AX GI(2,k)\ G1(2,A)

Now we prove the main result of this section.

Theorem 2. Let D be a quaternion algebra defined ovkerand letp be
an infinite dimensional cuspidal automorphic representationDgf\ ) *
with trivial central character. Letr = JL(p). Suppose that there exists
a quadratic extensiorkZl contained inD such that for all places of k,
Hompx (0v,1) # 0. LetGal(E/k) = {1,~}. Then

L(1/2a 7T)L(l/27 T Q¢ wE/k:) #0

if and only if there exists a Hecke characterof A, that does not factor
throughN¥ such that

T(m(x) @ w(x)" @) #0.
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Moreover, supposg is a finite set of places @fwhich stay prime irf, and
ay, for v € S are characters oz such thatHom x (o, o) # 0 for all
v € S. Thenwe may assume thatin the previous statewenty) /x, = ay
forv e S.

Itis clear that if the statement in Theorem 2 involvipdolds fory, then
it holds forx (3 o NE), whereg is a Hecke character @f*.

Proof. Assume thal.(1/2, ) L(1/2, 7 ®@cwg i) # 0. By [W3], Theoeme

2, it follows that
[ f@dsro
AXEX\AX

for somef € ¢ = JL(). On the other hand, by an argument as in Lemma
1.4.9 of [H], there exists a Hecke characteof A}, such thaty does not
factor throughNZ, (x, o v)/x» = a, forv € S, and

/ F@)x(v(@)x(@) ") e £ 0
AXEX\AX

for somef’ € o = JL(x). By Lemma 1 withy, = x~' andx; = x, we
haveT (7(x) @ m(x)¥ @ w) # 0.
The other implication of the theorem follows from Lemma 21

3. Applications to modular forms

The main result of this section is Theorem 3, a version of Theorem 2 for new
forms inSi(Io(p)), wherek is an even integer such thiat2 is odd, and

is a prime such that = 3 (mod 4). To obtain Theorem 3 as an application

of Theorem 2, it is necessary to show locally that some trilinear forms do
not vanish on certain pure tensors composed of a combination of new and
old vectors. In particular, we need more information than is contained in
[GP], where the case of a triple tensor product of unramified representations
or a triple tensor product of special representations is treated. To obtain the
required result, we need to generalize the description of the new vector in
a Kirillov model from [GP] to the case when the central character is not
trivial. The result on trilinear forms appears in Lemma 3, and the new vector
in a Kirillov model is described in the discussion preceding the lemma. We
begin the section by giving the straightforward application of one direction
of Theorem 1 to modular forms.

Proposition 1. Let N be a nonnegative integer, and lgétbe a positive
even integer. Lef’ € Si(IH(NV)) be a new form. Led/ be a nonnegative
integer such thatV|M, let y be a Dirichlet character moduld/, and let
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Fyin Sy o(Io(M), x) be an eigenform fof'(p) for p M. If there exists a
divisord of M /N such that

do
<F’ (0 1>k7F1 ’ FlHWM]k/2>Fo(M)\ﬁ 7& 0

then

Proof.Let F; = I1|[W]y /2 and

r=nfan),

Let fr, frr, fr, and fr, be the functions oKks1(2, A) corresponding td”,
F’, Fy andFy, respectively, as in [Ge], Sect. 3.A. Note thatfioe G1(2, A),
frr(h) = fr(hhy), where

ho=1] (d; (1)>p

pld

Let 7, 0 and & be the irreducible cuspidal automorphic representations
generated by, fr, andfz,, respectively. Thed = o". Now

/ fr (o) T (1) Fr () dh
AX G1(2,Q)\ G1(2,A)

do
= (F]| (0 1) s B P Walkg2) roons
k
£0.

Sincefr, isin = ¢" and fg, isin & = o, the conclusion follows from
Theorem 1 of Sect. 1 and Example 6.19 of [Ge[l

To prove Theorem 3 we need a lemma about new vectors and trilinear
forms. Before stating the lemma we recall some definitions and results. Sup-
pose for the moment th&tis a nonarchimedean local field of characteristic
zero, with ring of integer®.. Let 3, be the prime ideal oDy, and letry,
be a uniformizing element, i.€};, = m,Ok. Supposer € Irr(Gl(2, k))
is infinite dimensional. For each nonnegative integgelet (o, n) be the
space off € o such thav (k) f = w,(a)f for

k= (‘Cl 2) € Iy(n) = {(Z Z) €29, c=0 (mod M)}

Itis well known thatZ (o, n) # 0 for somen and that for the smallest sueh
the conductor(o) of o, dim¢ L(o,n) = 1. We call any nonzero vector in
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L(o,c(0)) anew vector of. It is easy to see that jf € L(o, n) is nonzero,
then there exists a nonzefd € L(cV,n) such that(f, f¥) # 0, where
(,) is the canonical pairing betweerands". In particularc(c) = c(aV).
New vectors can be explicitly described in the Kirillov modé(o, ) of

o with respect to a nontrivial additive characterof k. Assume that the
conductor ofyp is D. If o is supercuspidal, then by [S2}, = Wo X isa
new vector inK (o, ¢). If o is the irreducible principal series representation
(11, pue2), then a new vectof; is given by the following formulas:

( val(x)
X0 @)z (@) pa(x) Y (k)" g () "

n=0
if c(p1) = c(p2) =0,
pa(x)x o, ()| if o(p1) = 0, c(u2) >0,
pa (@) xo, (@)]z] 7 if ¢(ur) > 0, ¢(u2) =0,
p(z)p2(2)x o (@) if ¢(p1) > 0,c(pz) > 0.
These formulas can be obtained using the Weil representation model for

(1, pe2), for example. Using a trick, we can also describe a new vector in
the model forr" which has as underlying spaég o, v)) and action defined

by 0’(g9) = wo(det(g)) "o (g). Let

1/2

Then a computation shows that = o(go) f1 is @ new vector fofo’, K (o,
1)). Recall that by [Go], p. 1.22, the m&p’, K (0,)) — (¢V, K(cV, 1))
that sendsf tow, ! f is an isomorphism ofi1(2, k) representations. It fol-
lows thatw ! f» is @ new vector ir{a", K (o, )). Using our explicit de-
scription, we find that there is a nonzero constaat C* such that ifo is
supercuspidal representation thén= X and if o is the irreducible

principal series representatiafiy , 12), then

val(z)

Xo @)Y () T g (g )

n=0
if c(p1) = c(p2) =0,
p1 (@) xo, ()] if o(p1) = 0, c(p2) >0,
pa(@)xo, (x)|x["/? if ¢(u1) > 0,c(ug) = 0,
XD;(JJ) if c(p1) > 0,c(p2) > 0.

For information about trilinear forms, see [P]. The following result
should be compared to Propositions 6.1 and 6.3 of [GP].

fo(x)=c-
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Lemma 3. Letk be a nonarchimedean local field. Letr € Irr(G1(2, k)),

with w, = 1. Let f{ € o and f, € ¢" be new vectors. I& is either
supercuspidal or an element of the continuous series, and there exists an
unramified charactep: of £* such thatr = 7(u, 1), then there exist

T € Homgo (0 @ 0¥ @7, 1) and f € = fixed underp(c(o)) such that

T(fi® f2® f)#0.

Proof. By our remark concerning pairing of vectordifrr, n) andL (7", n)
it suffices to construct an elementidbm (o 1) (c®0oV, ") thatis nonzero
on f1 ® fo. By Frobenius reciprocity,

Homgz 1) (0 ® 0¥, p(p, ")) = Homp(o ® 0¥, ),

whereq is the quasi-character of the Borel subgrdgiplefined by

t1 x _
@ (6 t2> = ) palt2) e S|/,

To prove the lemmait suffices to produce an eleniesftHom g (c®@co ¥, o)
such thatL(f; ® fa) # 0. We will use the Kirillov model ofs and the
model(c’, K (o, 1)) for oV from the paragraph preceding the lemma. Define
L:o®c’ — aby

L(f® f)= . (@) f' (~2)wo (@) () 2| 712 d¥a

Itis easy to check that this integral always converges, and defiBawnap.
Using the descriptions of; and f, from above, a computation shows that

L(fi® f2) #0. O

To state Theorem 3, we need some notation. Edbe an imaginary
quadratic extension @@, and lety be a Hecke character @f, that does
not factor through\Ig. We letM (x) be the conductor of (y). We say that
x is of modular form type ifr(x)oo is of modular form type. An element
m € Irr(Gl(2,R)) is of modular form type if and only if there exists a
positive integef such that ifft = 1 thent = = (1, sign), and ifl > 1, then

o] |4=172 1 1=0=1/2) if [ is even,
o
o 072 ) |7 2igm) if 1is odd.

Here, the notation is as in [Ge]. The terminology is motivated by the fol-
lowing facts. If for some positivé, nonnegative integeiv, and Dirichlet
character) modulo N, F' € S;(IH(N),v) is a nonzero new form, and

T = ®,Ty IS the irreducible cuspidal automorphic representation associ-
ated toF’, thenr, is as above. Conversely,if = ®,m, is an irreducible
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cuspidal automorphic representatiortif2, A ), andr, is of modular form
type and as described as above, theranonically induces a new form in
S1(I'v(N),v), whereN is the conductor of, andy is related to the central
character ofr. For more, see Lemma 5.16 and the discussion in Sect. C of
[Ge]. Let xo(2) = 2™Z"(2Z)", wherem andn are nonnegative integers,
with at most one nonzero, amds C. Theny is of modular form type if and
only if there exists a positive integésuch that

(1-1)

=[-1 = - .
m-+n , T 5

See [Ge], Remark 7.7.

Theorem 3. Letp be a prime such that = 3 (mod 4), and letk be an
even positive integer such thaf2 is odd. LetF € Si(Iv(p)) be a new
form. LetS be a finite set of primes @ not includingp andoc that do not
splitin E = Q(y/—p), and leta,, ¢ € S, be a collection of characters of
E that are trivial onQ; . LetGal(£/Q) = {1,~}. Then

k k
if and only if there exists a Hecke charactenof A ;, of modular form type
that does not factor througNg and a positive integed such thatp divides
M = M(x) exactly,x, is unramified,(xq © 7v)/xq = o4 for ¢ € S,
Xoo(2) = 2271 (22)1-H2)/2, d|(M /p) and

d0
F1(51) B AWl s #0.

whereF is the new form of weighit/2 and levelM associated tg, as in
the preceding discussion.

Proof. Let w be the irreducible cuspidal automorphic representation of
GI1(2, A) associated té' as in [Ge], Proposition 5.21. Then the product from
the statement of the theorem does not vanish if and odlylif2, =) L(1/2,
TR wg/qg) # 0.

Assume thatl.(1/2,m)L(1/2,7 ® wg/q) # 0. SinceL(1/2,7) # 0,
it follows thate(1/2,7) = 1. By Theorem 6.15 and Theorem 6.16 of [Ge],
it follows thate(1/2, m,) = —1; here, and in the following, thefactor at
the placev of QQ is defined with respect to the standard additive character of
Q.. Now 7, = Sp ®n where where) is an unramified character such that
n? = 1; see [GP], Lemma 4.1. Sine€l /2, 7,) = —1 it follows thatn = 1.
Now let D be the quaternion algebra ov@ramified at exactly andco. By
[V], E is contained inD. For an explicit description ab, see [S2]. Since,,
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andr, are in the discrete series, it follows thHi(7) # 0; let o = JL(7).
Sincep, = 1, we haveHomE; (0p,1) # 0. By [W1], Homqu (04:1) #0
forall ¢ < oo, ¢ # p. Sincek is even,ry, = o(| |[F=D/2 )| |=(:=1)/2) in
the notation of [Ge], p.58. Hence, by p. 142 of [Ge], = N>=%)/2 5, _,.
Identifying F'o, with C, it is easy to see that

k—2

@ LiH(2—k) [25—i—(2—k)/2

i=0

Qoo‘Ego =

It follows thatHom ,x (000, 1) # 0.

Now we apply Theorem 2. In addition to tle for g € S, leta, =1
and oo (2) = 2~ (*/2=1Dzk/2=1 Then by, = 1, the characterization of
00, @nd for example, Theorem 1.4.4 of [H],

Hom px (v, ) # 0

forv € S U {p,o0}. By Theorem2, it now follows that there is a Hecke
charactery of A, that does not factor througﬁg such thatx, ov)/x» =

a, forv € SU{p, o} andT (c @ oV @7) # 0, wheres = 7(x). Letm and

n be nonnegative integers with at most one nonzero andde€ be such
thatyo(z) = 2™mz"(2z)" forz € C*. SINCE(X00°7)/Xoo = (oo, it fOllOWS
thatm = k/2 — 1 andn = 0. Also, sincew, = 1, x,, factors through\Igz.

By the comment after Theorem 2, we may replgdey x (5 o Ng) for any
Hecke charactes of A@. It follows that we may assume thgj = o N(SZ

for some unramified characteof Q%, andy.(z) = 2#/2~1(2z)(1-k/2)/2,

To show how the nonvanishing of the trilinear form gives the nonva-
nishing of the inner product from the statement of the theorem we be-
gin with some notation and observations. We have that = o) =

o0
o] |B2=072 | |=k/2=D/26ign) if k > 1 andos, = o, = =(1,sign)
if k& = 1. For each finite primg of Q, let f1, € o, and fo, € o,/ be
new vectors, and lef; o € oo and fo o € oY be nonzero vectors of
weightk /2. Let fi = ®, f1, and fo = ®, f2,. Thenf; € ¢ andfs € o.
Moreover, f1 is a nonzero multiple of, f2,, © f5 ., and f, is a nonzero
multiple of ®,f14 ® f] -, Wheref] , and f; ., are nonzero vectors of
weight —k/2 in o, ando,, respectively. LetV/ be the conductor of,
i.e., M =[], q°“?). Note that sincer, = 7 (y, uwg, g, ), ¢(op) = 1, and
p divides M exactly. Define a Dirichlet character : (Z/MZ)* — C*
by a(a) = [1,a woq(a). LELE) € Sy )o(I5(M), o) correspond tqf, i.e.,
defineFy by Fi(g-i) = f1(g00)j(g,1)"/?. Let F’ = Fy|[W]y, 2. Consider
frr. As in the proof of Proposition 1, the space generatedzhys ¢V, and
[ is a nonzero multiple of. It follows that if F € Sy o(I0(M), a™ )
corresponds tg,, thenF’ is a nonzero multiple of%.
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We now claim that there exist§ = ®, f, € = such that for all finite
primesq of Q, f; € L(my,c(ay)), f2, is a vector of weight, and7'(fa ®
fi® f") # 0.By[P], for all places of Q we havelim¢ Homg(2,g,) (00 ®
o) ® m,1) < 1. Thus, to prove our claim it suffices to show that for
each finite place; there existT; € Homg(s,g,)(0q ® 0, ® 7y, 1) and
fq € L(my,c(oy)) such thatT(f1, ® faq ® f;) # 0, and there exist
T € Homgyo0..)(000 @ 0, ® 7,1) and f” € 7, of weightk such
that Too (f] oo ® f3.00 @ f") # 0. Forq # p this follows from Lemma 3.
Forp andoo we argue as follows. Sincg, - F1|[Wil; /2 € Si(Io(M)) is
nonzero, there exists € Si(Iv(M)) that is an eigenform for the Hecke
operatorsl’(q) for ¢ 4 M and

(G, I - F1|[WM]k/2> #0.

The cuspidal automorphic representatidmenerated by,; is irreducible,
7L, = Teo, and sincer’ has trivial central character apdiivides)M exactly,

m, = T, = Sp. Moreover, the nonvanishing of the lastinner productimplies
the nonvanishing of

/ f2(9) f1(9) fa(g) dg,
AX G1(2,Q)\ G1(2,A)

which implies the conditions fgs andoo.

Next, we definel. For each finite prime of Q let f, be a new vector for
74, and letf,, be a nonzero vector of weightin 7. Let f = ®, f,,. We
may assume thatr = f. Letq be afinite prime of). It is well known that
L(mq,c(0q)) is spanned by the vectors

-1 —c(oq)+c(mg)
qg 0 q q) ()
(&m<o])ﬁww@<q 0 1>h

By writing eachf, as linear combination of these vectors, it follows that we
may assume that eagf) is of the form

quq 0
ﬁ:@<0]>b

where0 < j, < c(oq) — ¢(mq). Thus, we may assume thfit = w(ho) f,

where )
d0
ho fr—y H < 0 1>q s

qld

andd =[], ¢’1. Asc(mp) = ¢(Sp) = 1, p 1 d, andd|(M/p).
The nonvanishing of'(f> ® f1 ® f) now implies the nonvanishing of
the inner product from the theorem.
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Finally Lemma 2, combined with an argument as in the proof of Proposi-
tion 1, shows that if as in the theorem exists, then the product.efalues
from the theorem does not vanishi
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