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Abstract. Let V be an even dimensional nondegenerate symmetric bilinear space over a
nonarchimedean local field F of characteristic zero, and let n be a nonnegative integer. Sup-

pose that σ ∈ Irr(O(V )) and π ∈ Irr(Sp(n, F )) correspond under the theta correspondence.

Assuming that σ is tempered, we investigate the problem of determining the Langlands quo-
tient data for π.

Let F be a nonarchimedean local field of characteristic zero, let Vm be a nondegen-
erate symmetric bilinear space over F of Witt index m and even dimension l, and let
n be a nonnegative integer. Fix a nontrivial additive character ψ of F . Let ωm,n be
the smooth Weil representation of O(Vm) × Sp(n, F ) associated to ψ, where Sp(n, F ) is
the isometry group of the nondegenerate symplectic bilinear space of dimension 2n. Let
Rn(O(Vm)) be the set of σ ∈ Irr(O(Vm)) such that σ is a nonzero quotient of ωm,n, and
define Rm(Sp(n, F )) similarly. The Howe duality conjecture states that the set known as
the theta correspondence

{(σ, π) ∈ Rn(O(Vm))× Rm(Sp(n, F )) : HomO(Vm)×Sp(n,F )(ωm,n, σ ⊗ π) 6= 0}

is the graph of a bijection between Rn(O(Vm)) and Rm(Sp(n, F )). The conjecture holds if
the residual characteristic of F is odd [W]. If σ ∈ Irr(O(Vm)) and π ∈ Irr(Sp(n, F )) cor-
respond, i.e., the above homomorphism space is nonzero, then one can ask how properties
of σ carry over to properties of π. In the range dimF Vm = l ≤ 2n, if σ is unramified,
and the L-group parameter of σ is given, then π is unramified, and the L-group parameter
of π is known [K-R2]. Also, if parabolic inducing data for σ is known, then parabolic
inducing data for π is known [K1]. In this note, given that σ is tempered, we investigate
the problem of determining the Langlands quotient data for π. Throughout the note, we
do not assume the Howe duality conjecture or that the residual characteristic of F is odd.

Our first main result addresses the question of when π is tempered. In the following
theorem, if k a positive integer, then Stk is the Steinberg representation of Gl(k, F ), and
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χ is the quadratic character of F× defined by χ(t) = (t,disc(Vm))F ; for the definition of
the Langlands quotient, see section 3.

Theorem 4.2. Suppose that σ ∈ Irr(O(Vm)) is tempered, and π ∈ Irr(Sp(n, F )) is such
that

HomO(Vm)×Sp(n,F )(ωm,n, σ ⊗ π) 6= 0.

(1) If 2n ≤ dimF Vm = l, then π is tempered;
(2) If 2n > dimF Vm = l, σ /∈ Rn−1(O(Vm)), and π is not tempered, then

π = L(δ1 ⊗ · · · ⊗ δt ⊗ τ),

where

δ1 ∼= IndGl(n1,F )

PGl
p1,...,ps

(Stp1 ⊗ · · · ⊗ Stps
)⊗ χ(det)|det |n−l/2−c/2,

with min(p1, . . . , ps) ≥ n− l/2+1 and c an integer such that min(p1, . . . , ps)− 1 ≥
c > 0.

It would be very interesting to determine whether π as in (2) of Theorem 4.2 actually
exist, i.e., whether for 2n > dimF Vm = l there exist σ ∈ Irr(O(Vm)) and π ∈ Irr(Sp(n, F ))
such that σ and π correspond, σ is tempered, σ /∈ Rn−1(O(Vm)), but π is not tempered.

Our second main result considers the situation when n varies. Assume now that σ ∈
Irr(O(Vm)) is pre-unitary, corresponds to π, and that π is tempered. Suppose that n′ ≥ n,
and that σ also corresponds to π′ ∈ Irr(Sp(n′, F )). Then the Langlands quotient data for
π′ is determined by π in the range 2n′ ≥ 2n ≥ dimF Vm = l:

Theorem 4.4. Suppose that σ ∈ Irr(O(Vm)) is pre-unitary. Let n and n′ be positive
integers such that 2n′ ≥ 2n ≥ dimF Vm = l. Let π ∈ Irr(Sp(n, F )) and π′ ∈ Irr(Sp(n′, F )).
If π is tempered and

HomO(Vm)×Sp(n,F )(ωm,n, σ ⊗ π) 6= 0, HomO(Vm)×Sp(n′,F )(ωm,n′ , σ ⊗ π′) 6= 0,

then
π′ = L(χ| |n

′−l/2 ⊗ χ| |n
′−1−l/2 ⊗ · · · ⊗ χ| |n+1−l/2 ⊗ π).

Of course, one expects analogous results if one begins instead with an element of
Irr(Sp(n, F )). One obstacle, however, to extending Theorem 4.4 to this case is the key
result Proposition 4.3, from [K-R1].

One application which these results might make possible is the computation of the
standard L-functions of theta lifts π′ as in Theorem 4.4, and in particular the determination
of poles of these L-functions. Indeed, this was our motivation for this note. We plan to
return to this topic on a later occasion.
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Notation. We will use the following notation. Let G be a group of td-type, as in [Car],
with a countable basis. Let S(G) be the C vector space of locally constant, compactly
supported C valued functions on G. Let Irr(G) be the set of equivalence classes of smooth
admissible irreducible representations of G. We let 1 denote the trivial representation of
G. Let π be a smooth representation of G. The smooth contragredient representation of π
is π∨ and if π admits a central character, we denote it by ωπ. If G is contained as a normal
subgroup in G′, then for g′ ∈ G′, we let g′ ·π be the representation of G with the same space
as π and action (g′ · π)(g) = π(g′−1gg′). A representation π of G is pre-unitary if there is
a nondegenerate G invariant Hermitian form on the space of π. Suppose G is unimodular,
and M and N are closed subgroups of G such that M normalizes N , M ∩N = 1, P = MN
is closed in G, N is unimodular and P\G is compact. Fix a Haar measure dn on N , and
for m ∈M , let δ(m) be the positive number such that all f ∈ S(N),∫

N

f(m−1nm) dn = δ(m)
∫

N

f(n) dn.

The normalized Jacquet module RN (π) of π is the smooth representation of M defined
by RN (π) = πN ⊗ δ−1/2, where πN is the quotient of π by the C subspace generated by
the vectors v − π(n)v, for v ∈ π and n ∈ N . We define RN (π) = RN (π∨)∨. Suppose
that σ is a smooth representation of M . Then IndG

P σ is the representation of G by right
translation on the C vector space of smooth functions f on G with values in σ such that
f(mng) = δ(m)1/2σ(m)f(g) for m ∈M , n ∈ N and g ∈ G. We have Frobenius reciprocity:
HomG(π, IndG

P σ) ∼= HomM (RN (π), σ) and HomG(IndG
P σ, π

∨) ∼= HomM (σ,RN (π)∨). If π
is admissible we have HomG(IndG

P σ, π) ∼= HomM (σ,RN (π)). Throughout the paper, F is
a nonarchimedean local field of characteristic zero, and ( , )F is the Hilbert symbol of F .
We let | | denote the valuation on F such that if µ is an additive Haar measure on F , then
µ(xA) = |x|µ(A) for x ∈ F and A ⊂ F . If π ∈ Irr(Gl(q, F )), then we let e(π) be the unique
real number such that the central character of π ⊗ |det |−e(π) is unitary. If n is a positive
integer, then an ordered partition of n is a k-tuple (n1, . . . , nk) of positive integers such
that n = n1 + · · · + nk. If G is the group of F -points of a connected reductive algebraic
group defined over F then π ∈ Irr(G) is tempered if and only if ωπ is unitary and every
matrix coefficient of π lies in L2+ε(G/Z(G)) for all ε > 0. If π ∈ Irr(Gl(n, F )), then π is
essentially tempered or essentially square integrable if π⊗|det |−e(π) is tempered or square
integrable, respectively. The algebraic closure of F is F . In this note, all functions act on
the left, and composition of functions is taken from right to left. In this paper we do not
make assumptions about the residual characteristic of F or assume Howe duality.

1. The groups. Let q be a positive integer. We use the standard notation for Gl(q). As
a maximal F split torus of Gl(q) we take the subgroup of diagonal matrices. As a base for
the positive roots of Gl(q) we take ∆Gl = {e1 − e2, e2 − e3, . . . , eq−1 − eq}. For an ordered
partition q = q1 + · · ·+ qn of q we let PGl

q1,...,qn
be the F -points of the parabolic subgroup

defined by ∆Gl −{eq1 − eq1+1, eq1+q2 − eq1+q2+1, . . . , eq1+···+qn−1 − eq1+···+qn−1+1}. We let
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MGl
q1,...,qn

andNGl
q1,...,qn

denote the Levi factor and unipotent radical of PGl
q1,...,qn

, respectively.
We also define PGl

0,q = PGl
q,0 = MGl

0,q = MGl
q,0 = Gl(q, F ) and NGl

0,q = NGl
q,0 = 1. As usual, we

identify the center of Gl(q, F ) with F× via t 7→ t · Iq.
Let V0 be a vector space over F of dimension d endowed with an F -structure and a

nondegenerate symmetric bilinear form ( , )0 defined over F which is anisotropic over F .
Let V0 = V0(F ). For m a nonnegative integer, let

Vm = (Fx1 ⊕ · · · ⊕ Fxm)⊕V0 ⊕ (Fx′1 ⊕ · · · ⊕ Fx′m),

and define the symmetric bilinear form ( , )m on Vm as the direct sum of ( , )0 and
the form defined by (xi, xj) = (x′i, x

′
j) = 0 and (xi, x

′
j) = δij for 1 ≤ i, j ≤ n. The

Witt index of Vm = Vm(F ) is m. Let l = dimF Vm. We fix the maximal F -split torus
of SO(Vm) whose elements are the maps diag(t1, . . . , tm) which send xi to tixi, are the
identity on V0, and send x′i to t−1

i x′i. As a base for the F -roots of SO(Vm) with respect
to our torus we take ∆ = {e1 − e2, e2 − e3, . . . em−1 − em, em−1 + em} if d = 0 and
{e1 − e2, e2 − e3, . . . em−1 − em, em} otherwise. For 1 ≤ k ≤ m, consider the parabolic
subgroup defined by the complement of the k-th element of ∆. Then the group P SO

k of F
points of this parabolic subgroup is the stabilizer in SO(Vm) of Fx1 ⊕ · · · ⊕Fxk. We shall
write the elements of P SO

k with respect to the decomposition

Vm = Xk ⊕ Vm−k ⊕ Yk,

where Xk = Fx1 ⊕ · · · ⊕ Fxk and Yk = Fx′1 ⊕ · · · ⊕ Fx′k. Then the elements of P SO
k have

the form h ∗ ∗
0 g ∗
0 0 h∗−1


where h∗ is the unique element of Gl(Yk) such that (hx, y) = (x, h∗y) for x ∈ Xk and
y ∈ Yk, and g ∈ SO(Vm−k). Often, we will identify Gl(Xk) and Gl(Yk) with Gl(k, F )
via our choice of bases. Then h∗ = th. Let MSO

k be the Levi component of Pk and let
Nk be the unipotent radical of P SO

k . Via the isomorphism Gl(Xk) ∼= Gl(k, F ), we have an
isomorphism MSO

k
∼= Gl(k, F )×SO(Vm−k). In addition, let Pk be the subgroup of elements

of O(Vm) which stabilize Xk, i.e., the elements of the above form, with g ∈ O(Vm−k). Let
Mk be the subgroup of elements of Pk of the formh 0 0

0 g 0
0 0 h∗−1

 .

Then Mk normalizes Nk, Mk∩Nk = 1, and Pk = MkNk. Also, Mk
∼= Gl(k, F )×O(Vm−k).

We let P0 = M0 = O(Vm) and N0 = 1.
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For n a nonnegative integer, let

Wn = Fy1 ⊕ · · · ⊕ Fyn ⊕ Fy′1 ⊕ · · · ⊕ Fy′n,

and endow Wn with the symplectic bilinear form such that 〈yi, yj〉 = 〈y′i, y′j〉 = 0 and
〈yi, y

′
j〉 = δij for 1 ≤ i, j ≤ n. Let Wn = Wn(F ). We fix the maximal F -split torus

of Sp(Wn) whose elements are the maps diag(t1, . . . , tn) which send yi to tiyi and y′i to
t−1
i y′i. As a base for the F -roots of Sp(Wn) with respect to our torus we take ∆′ =
{e1 − e2, e2 − e3, . . . , , en−1 − en, 2en}. For 1 ≤ j ≤ n consider the parabolic subgroup
defined by the complement of the j-th element of ∆′. Then the group P ′j of F points of
this parabolic subgroup is the stabilizer in Sp(Wn) of Fy1 ⊕ · · · ⊕ Fyj . We will write the
elements of P ′j with respect to the decomposition

Wn = X ′
j ⊕Wn−j ⊕ Y ′

j ,

where X ′
j = Fy1 ⊕ · · · ⊕Fyj and Y ′

j = Fy′1 ⊕ · · · ⊕Fy′j . Then the elements of P ′j have the
form h′ ∗ ∗

0 g′ ∗
0 0 h′∗−1

 ,

where h′∗ is defined as the unique element of Gl(Y ′
j ) such that 〈hx, y〉 = 〈x, h′∗y〉 for

x ∈ X ′
j and y ∈ Y ′

j , and g′ ∈ Sp(Wn−j). Let M ′
j be the Levi component of P ′j and let

N ′
j be the unipotent radical of P ′j . Then M ′

j
∼= Gl(j, F ) × Sp(Wn−j). More generally, if

j = j1 + · · ·+ ja is an ordered partition of j, we let P ′j1,...,ja
be the subgroup of P ′j whose

elements are of the above form with h′ ∈ PGl
j1,...ja

. We also let P ′0 = M ′
0 = Sp(n, F ) and

N ′
0 = 1.

2. Results on square integrable and tempered representations. In this section
we recall some known results on square integrable and tempered representations. We
also prove some results that will be used in the proof of part (2) of Theorem 4.2. Let
σ ∈ Irr(O(Vm)). Then σ|SO(Vm) = σ1 ⊕ · · · ⊕ σt, for some σi ∈ Irr(SO(Vm)), 1 ≤ i ≤ t. We
say that σ is tempered if and only if every σi is tempered.

For the following theorem, see [C], Corollary 4.4.5 and Theorem 4.4.6.

Theorem 2.1. Let 1 ≤ k ≤ m and 1 ≤ j ≤ n. Let σ ∈ Irr(O(Vm)) and π ∈ Irr(Sp(n, F ))
be tempered. Suppose that RNk

(σ) and RN ′
j
(π) are nonzero, and σ1⊗σ2 ∈ Irr(Gl(k, F )×

O(Vm−k)) and π1 ⊗ π2 ∈ Irr(Gl(j, F )× Sp(n− j, F )) are nonzero irreducible subquotients
of RNk

(σ) and RN ′
j
(π), respectively. Then

1 ≤ |ωσ1(t)|, 1 ≤ |ωπ1(t)|

for |t| < 1.
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Let p = p1 + p2 be an ordered partition of p. Let δ ∈ Irr(Gl(p, F )) be square integrable.
Suppose that RNGl

p1,p2
(δ) is nonzero, and δ1 ⊗ δ2 ∈ Irr(Gl(p1, F ) × Gl(p2, F )) is a nonzero

irreducible subquotient of RNGl
p1,p2

(δ). Then

1 < |ωδ1(t1)||ωδ2(t2)|
for |t1| < |t2|.
Proposition 2.2. Let ρ ∈ Irr(Gl(q, F )) be essentially square integrable. Let q = q1 + q2
be an ordered partition of q. Assume that RNGl

q1,q2
(ρ) is nonzero, and that ρ1 ⊗ ρ2 ∈

Irr(Gl(q1, F )×Gl(q2, F )) is a nonzero irreducible subquotient of RNGl
q1,q2

(ρ). If ρ2 = α◦det

is one dimensional, then ρ ∼= Stq ⊗ β(det), where β = α| |q1/2−a and a is an integer such
that 0 ≤ a ≤ q1.

Proof. By the classification of essentially square integrable representations, ρ is a quo-
tient of I = IGl(q,F )

PGl
n,...,n

(γ ⊗ (γ ⊗ | det |) ⊗ · · · ⊗ (γ ⊗ |det |q/n−1)), where n divides q and
γ ∈ Irr(Gl(q/n, F )) is supercuspidal. Since RNGl

q1,q2
is exact, it follows that RNGl

q1,q2
(ρ)

is a quotient of RNGl
q1,q2

(I). Hence, ρ1 ⊗ ρ2 is an irreducible subquotient of RNGl
q1,q2

(I).
By, for example, the summary [Rod], Proposition 3, p. 204, for some permutation z of
{1, . . . , q/n}, ρ1 ⊗ ρ2 is a subquotient of

IndGl(q1,F )×Gl(q2,F )

PGl
n,...,n∩(Gl(q1,F )×Gl(q2,F ))

((γ ⊗ |det |z(1)−1)⊗ · · · ⊗ (γ ⊗ |det |z(q/n)−1)),

where the partition of q defined by z, namely q = n+· · ·+n, is a refinement of the partition
q = q1 + q2, and z(i) < z(i+ 1) if in is not q1. This implies that q1 and q2 are divisible by
n, and that

z(1) < · · · < z(q1/n), z(q1/n+ 1) < · · · < z(q/n).

It follows that ρ2 is an irreducible subquotient of

IndGl(q2,F )

PGl
n,...n

((γ ⊗ |det |z(q1/n+1)−1)⊗ · · · ⊗ (γ ⊗ |det |z(q/n)−1)).

On the other hand, ρ2 = α ◦ det embeds in

IndGl(q2,F )

PGl
1,...1

(α| |(1−q2)/2 ⊗ α| |(3−q2)/2 ⊗ · · · ⊗ α| |(q2−1)/2).

See [K2]. By, for example, [Rod], Proposition 5, p. 206, n = 1, and

α| |(1−q2)/2, . . . , α| |(2i+1−q2)/2, . . . , α| |(q2−1)/2

is a permutation of

γ| |z(q1+1)−1, . . . , γ| |z(q1+1+i)−1, . . . , γ| |z(q)−1.

As z(q1 +1) < · · · < z(q), it follows that γ| |z(q1+i+1)−1 = α| |(2i+1−q2)/2 for 0 ≤ i ≤ q2−1.
Hence, γ = α| |(1−q2)/2+i+1−z(q1+i+1) for 0 ≤ i ≤ q2−1, and we see that i+1−z(q1+i+1) for
0 ≤ i ≤ q2−1 is constant. Thus, z(q1+i+1) = i+1+z(q)−q2 for 0 ≤ i ≤ q2−1. This implies
q ≥ z(q) ≥ q2. So γ = α| |(1−q2)/2+q2−z(q) = α| |−(q2−1)/2−a, where a = z(q)− q2. �
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Corollary 2.3. Let ρ ∈ Irr(Gl(q, F )) be essentially square integrable. Let q = q1 + q2
be an ordered partition of q. Assume that RNGl

q2,q1
(ρ) is nonzero, and that ρ2 ⊗ ρ1 ∈

Irr(Gl(q2, F )×Gl(q1, F )) is a nonzero irreducible subquotient of RNGl
q2,q1

(ρ). If ρ2 = α◦det

is one dimensional, then ρ ∼= Stq ⊗ β(det), where β = α| |q1/2−a and a is an integer such
that 0 ≤ a ≤ q1.

Proof. We have by Corollary 4.2.5 of [C] and a straightforward isomorphism, RNGl
q2,q1

(ρ) =
RNGl

q2,q1
(ρ∨)∨ ∼= R

NGl
q2,q1

(ρ) ∼= RNGl
q1,q2

(ρ). The corollary now follows from Proposition
2.2. �

Corollary 2.4. Let the notation be as in Corollary 2.3. Then a < q1/2.

Proof. Let e = e(ρ). Since ρ2 ⊗ ρ1 is a nonzero irreducible subquotient of RNGl
q2,q1

(ρ),
it follows that (ρ2 ⊗ |det |−e) ⊗ (ρ1 ⊗ |det |−e) is a nonzero irreducible subquotient of
RNGl

q2,q1
(ρ ⊗ |det |−e). Since ρ ⊗ |det |−e is square integrable, taking t1 = t and t2 = 1 in

Theorem 2.1, we have for |t| < 1,

1 < |ωρ2(t)||t|−eq2

1 < |α(t)|q2 |t|−eq2

1 < |β(t)|q2 |t|−(q1/2−a)q2−eq2

1 < |t|−(q1/2−a)q2 .

Here we have used that ρ ∼= Stq ⊗ β(det), so that |β(t)|q2 = |t|eq2 . This implies that
a < q1/2. �

3. The Langlands classification for Sp(n, F ). We recall the Langlands classification
of Irr(Sp(n, F )) in terms of tempered representations. See [T], section 6.

Theorem 3.1 (Langlands classification). Let n = n1+· · ·+nt+n0, where n1, . . . , nt, n0

are nonnegative integers, with n1, . . . , nt positive if t > 0. Let δi ∈ Irr(Gl(ni, F )) for
1 ≤ i ≤ t and τ ∈ Irr(Sp(n0, F )) be such that:

(1) δ1, . . . , δt are essentially tempered and

e(δ1) > · · · > e(δt) > 0;

(2) τ is tempered.

Then the representation IndSp(n,F )
P ′

n1,...,nt

(δ1 ⊗ · · · ⊗ δt ⊗ τ) has a unique nonzero irreducible

quotient L(δ1⊗· · ·⊗δt⊗τ), IndSp(n,F )
P ′

n1,...,nt

(δ∨1 ⊗· · ·⊗δ∨t ⊗τ) has a unique nonzero irreducible

subrepresentation S(δ1 ⊗ · · · ⊗ δt ⊗ τ), and L(δ1 ⊗ · · · ⊗ δt ⊗ τ) ∼= S(δ1 ⊗ · · · ⊗ δt ⊗ τ).
Moreover, if π ∈ Sp(n, F ) then there exist a unique decomposition n = n1 + · · ·+ nt + n0

as above, unique δi ∈ Irr(Gl(ni, F )), 1 ≤ i ≤ t, and unique τ ∈ Irr(Sp(n0, F )) such that
(1) and (2) hold and π ∼= L(δ1 ⊗ · · · ⊗ δt ⊗ τ).
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4. Applications to the theta correspondence. In this final section we give the proofs
of Theorems 4.2 and 4.4. Fix a nontrivial additive character ψ of F . We let ωm,n denote
the Weil representation of O(Vm)× Sp(n, F ) on S(V n) associated to ψ. Explicitly, ωm,n is
given by the following formulas.

ωm,n(g, 1)ϕ(v) = ϕ(g−1v),

ωm,n(1,
(
a 0
0 ta−1

)
)ϕ(v) = χ(det(a))|det(a)|l/2ϕ(va),

ωm,n(1,
(

1 b
0 1

)
))ϕ(v) = ψ(

1
2

tr(bv, v))ϕ(v),

ωm,n(1,
(

0 1
−1 0

)
))ϕ(v) = γϕ̂(v).

Here, ϕ̂ is the Fourier transform defined by

ϕ̂(v) =
∫

V n

ϕ(v′)ψ(tr(v, v′)) dv′,

where the Haar measure is such that ˆ̂ϕ(v) = ϕ(−v) for ϕ ∈ S(V n) and v ∈ V n, and γ is a
fourth root of unity that depends only on V0, n and ψ. If g ∈ O(Vm), a ∈ Gl(n, F ),
b ∈ Mn(F ), tb = b and v = (v1, . . . , vn), v′ = (v′1, . . . , v

′
n) ∈ V n, we write g−1v =

(g−1v1, . . . , g
−1vn), va = (v1, . . . , vn)(aij), (v, v′) = ((vi, v

′
j)), bv = bt(v1, . . . , vn). Also,

χ is the quadratic character of F× defined by χ(t) = (t,disc(Vm))F . We note that χ does
not depend on m. We see that if Vm = 0, then ωm,n = 1 and if n = 0, then ωm,n = 1.

We let Rn(O(Vm)) be the set of σ ∈ Irr(O(Vm)) such that σ is a nonzero quotient of
ωm,n restricted to O(Vm). We define Rm(Sp(n, F )) similarly.

We recall the computation of the Jacquet modules of ωm,n from [K1]. We need some
notation. For 1 ≤ j ≤ n and 0 ≤ k ≤ r = min(m, j) let Q′

jk be the subgroup of M ′
j of

elements of the form 
h′′ ∗ 0 0 0
0 h′ 0 0 0
0 0 g′ 0 0
0 0 0 th′′−1 0
0 0 0 ∗ th′−1


where h′′ ∈ Gl(j − k, F ) and h′ ∈ Gl(k, F ). Also, define a representation σk of Gl(k, F )×
Gl(k, F ) on S(Gl(k, F )) by σk(h, h′)φ(x) = φ(h−1xh′).

Theorem 4.1 (Kudla). Let 1 ≤ j ≤ n and r = min(m, j). Then the representation
RN ′

j
(ωm,n) of O(Vm)×M ′

j has a filtration

0 = F r+1 ⊂ F r ⊂ F r−1 ⊂ · · · ⊂ F 1 ⊂ F 0 = RN ′
j
(ωm,n)
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such that for 0 ≤ k ≤ r,

F k/F k+1 ∼= Ind
O(Vm)×M ′

j

Pk×Q′
jk

ξkξ
′
kξ
′′
kσk ⊗ ωm−k,n−j .

Here, the induction is normalized, and the action is defined by

(

h ∗ ∗
0 g ∗
0 0 th−1

 ,


h′′ ∗ 0 0 0
0 h′ 0 0 0
0 0 g′ 0 0
0 0 0 th′′−1 0
0 0 0 ∗ th′−1

)(φ⊗ ϕ)

= ξk(deth)ξ′k(deth′)ξ′′k (deth′′)σk(h, h′)φ⊗ ωm−k,n−j(g, g′)ϕ,

where
ξk = | |−(l−k−1)/2, ξ′k = χ| |(l−k−1)/2, ξ′′k = χ| |l/2−n+(j−k−1)/2.

The statement of Theorem 4.1 was obtained by repeating the proof of the corresponding
theorem in [K1], adjusting for our conventions. See also [MVW], Chapitre 3. We can now
give the proof of Theorem 4.2:

Proof of Theorem 4.2. First we make a preliminary observation. Let 1 ≤ j ≤ n, and let ρ
and ρ′ be smooth admissible representations of finite length of Gl(j, F ) and Sp(n− j, F ),
respectively. Assume that

HomO(Vm)×Sp(n,F )(ωm,n, σ ⊗ IndSp(n,F )
P ′

j
(ρ⊗ ρ′)) 6= 0.

Then by Frobenius reciprocity,

HomO(Vm)×Gl(j,F )×Sp(n−j,F )(RN ′
j
(ωm,n), σ ⊗ ρ⊗ ρ′) 6= 0.

By Theorem 4.1, this implies that for some k with 0 ≤ k ≤ min(m, j),

HomO(Vm)×Gl(j,F )×Sp(n−j,F )(Ind
O(Vm)×M ′

j

Pk×Q′
jk

ξkξ
′
kξ
′′
kσk ⊗ ωm−k,n−j , σ ⊗ ρ⊗ ρ′) 6= 0.

By Frobenius reciprocity again, there is a nonzero Gl(k, F ) × O(Vm−k) × Gl(j − k, F ) ×
Gl(k, F )× Sp(n− j, F ) map

(∗) ξkξ
′
kξ
′′
kσk ⊗ ωm−k,n−j → RNk

(σ)⊗ RNGl
j−k,k

(ρ)⊗ ρ′.

Proof of (1). Assume that n ≤ l/2 and π is not tempered. As in Theorem 3.1, π ∼=
S(δ1⊗· · ·⊗δt⊗τ), where n = n1+· · ·+nt+n0 with t > 0, δi ∈ Irr(Gl(ni, F )), 1 ≤ i ≤ t, are
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essentially tempered such that e(δ1) > · · · > e(δt) > 0 and τ ∈ Irr(Sp(n0, F )) is tempered.
Let j = n1, ρ = δ∨1 and

ρ′ = IndSp(n−j,F )
P ′

n2,...,nt

(δ∨2 ⊗ · · · ⊗ δ∨t ⊗ τ).

Since π is isomorphic to a subrepresentation of IndSp(n,F )
P ′

j
(ρ⊗ ρ′), we have

HomO(Vm)×Sp(n,F )(ωm,n, σ ⊗ IndSp(n,F )
P ′

j
(ρ⊗ ρ′)) 6= 0.

So there is a nonzero map as in (∗), and hence there exist nonzero irreducible subquotients
σ1 ⊗ σ2 ∈ Irr(Gl(k, F ) × O(Vm−k)) of RNk

(σ) and ρ2 ⊗ ρ1 ∈ Irr(Gl(j − k, F ) × Gl(k, F ))
of RNGl

j−k,k
(ρ) such that there is a nonzero Gl(k, F )×O(Vm−k)×Gl(j− k, F )×Gl(k, F )×

Sp(n− j, F ) map

ξkξ
′
kξ
′′
kσk ⊗ ωm−k,n−j → σ1 ⊗ σ2 ⊗ ρ2 ⊗ ρ1 ⊗ ρ.

Hence,
HomGl(k,F )×Gl(k,F )(σk, (σ1 ⊗ ξ−1

k )⊗ (ρ1 ⊗ ξ′k
−1)) 6= 0

and

HomGl(j−k,F )(ξ′′k , ρ2) 6= 0, HomO(Vm−k)×Sp(n−j,F )(ωm−k,n−j , σ2 ⊗ ρ) 6= 0.

This implies that ρ1 = σ∨1 ⊗ χ(det) and ξ′′k = ρ2. Let

λ = l/2− n+ (j − k − 1)/2.

Then for t ∈ F×,

ωρ(t) =ωρ1(t)ωρ2(t)

|ωρ1(t)|−1 =|ωρ(t)|−1|ωρ2(t)|

|ωσ1(t)| =|t|(j−k)λ−e(ρ)j .

Assume k > 0. Since σ is tempered, by Theorem 2.1, for |t| < 1, we have

1 ≤ |ωσ1(t)| = |t|(j−k)λ−e(ρ)j .

This implies (j−k)λ ≤ e(ρ)j = e(δ∨1 )j. As n ≤ l/2, (j−k)λ ≥ 0, so that e(δ∨1 ) = −e(δ1) ≥
0, a contradiction.

Assume k = 0. Then ρ = δ∨1 = ξ′′0 . Since δ1 is an essentially tempered representation,
we must have j = 1 and δ1 = χ| |n−l/2, so that n− l/2 = e(δ1) > 0, a contradiction.
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Proof of (2). Let π ∼= S(δ1 ⊗ · · · ⊗ δt ⊗ τ), as in the proof of (1). Let e = e(δ1)
and δ1 ⊗ | det |−e ∼= IndGl(n1,F )

PGl
p1,...,ps

(η1 ⊗ · · · ⊗ ηs), where ηi ∈ Irr(Gl(pi, F )), 1 ≤ i ≤ s, are

square integrable. Then δ1 ∼= IndGl(n1,F )

PGl
p1,...,ps

((η1 ⊗ |det |e)⊗ · · · ⊗ (ηs ⊗ | det |e)). Let j = p1,

ρ = (η1 ⊗ |det |e)∨ and

ρ′ = IndSp(n−j,F )
Pp2,...,ps,n2,...,nt

((η2 ⊗ |det |e)∨ ⊗ · · · ⊗ (ηs ⊗ |det |e)∨ ⊗ δ∨2 ⊗ · · · ⊗ δ∨t ⊗ τ).

Arguing as above, there exist an integer k such that 0 ≤ k ≤ min(m, j) and nonzero
irreducible subquotients σ1 ⊗ σ2 ∈ Irr(Gl(k, F ) × O(Vm−k)) of RNk

(σ) and ρ2 ⊗ ρ1 ∈
Irr(Gl(j − k, F )×Gl(k, F )) of RNGl

j−k,k
(ρ) such that ξ′′k = ρ2 and ρ1 = σ∨1 ⊗ χ(det).

Assume k > 0. As in the proof of (1), we find that λ(j − k) ≤ je(ρ) = −je. Now
j − k ≥ 0; as e > 0, it follows that j − k > 0. Hence, by Corollaries 2.3 and 2.4,
ρ ∼= Stp1 ⊗ χ(det)|det |λ+k/2−a with a an integer such that 0 ≤ a < k/2, or equivalently,
η ⊗ |det |e ∼= Stp1 ⊗ χ(det)|det |n−l/2−c/2, with c = j − 1 − 2a satisfying j − 1 ≥ c > 0.
This implies that e = e(δ1) = n− l/2− c/2. Also, we have that

λ(j − k) ≤ −je
(l/2− n+ (j − k − 1)/2)(j − k) ≤ −j(n− l/2− c/2)

(l/2− n)(j − k) + (j − k − 1)(j − k)/2 ≤ −j(n− l/2) + j(c/2)

k(n− l/2) + (j − k − 1)(j − k)/2 ≤ j(j − 1)/2

(n− l/2) + (k + 1)/2 ≤ j,

so that (n− l/2) + 1 ≤ j.
Assume k = 0. The we have σ ∈ Rn−j(O(Vm)) and hence σ ∈ Rn−1(O(Vm)), a contra-

diction.
Since IndGl(n1,F )

Pp1,...,ps
(η1⊗· · ·⊗ηs) ∼= IndGl(n1,F )

Ppz(1),...,pz(s)
(ηz(1)⊗· · ·⊗ηz(s)) for any permutation

z of {1, . . . , s}, the same results hold for all of the ηi. The claim (2) now follows. �

To prove Theorem 4.4, we recall some results from [K-R1]. For s ∈ C and N a positive
integer, let IN (s, χ) be the degenerate principal series representation induced from the
quasi-character χ| |s of the Siegel parabolic of Sp(N,F ), i.e., the space of smooth functions
Φ on Sp(N,F ) such that

Φ(
(
a b
0 ta−1

)
g) = χ(det a)|det a|s+

N+1
2 Φ(g),

where
(
a b
0 ta−1

)
∈ P ′N and g ∈ Sp(N,F ). Finally, let (ωm,N )O(Vm) be the O(Vm)

coinvariants of ωm,N .
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Proposition 4.3 (Kudla-Rallis). Assume that 0 ≤ l ≤ N and let s0 = −l/2 + (N +
1)/2 = (2N+2− l)/2− (N+1)/2. Then there is a surjective Sp(N,F ) map from IN (s0, χ)
to (ωm,N )O(Vm).

Proof. See Proposition 5.5 of [K-R1]. �

Finally, we give the proof of Theorem 4.4.

Proof of Theorem 4.4. The argument is similar to the proof of the theorem for super-
cuspidal π and π′ in [K1]. By hypothesis, there exist a nonzero O(Vm) × Sp(n, F ) map
ωm,n → σ ⊗ π and a nonzero O(Vm) × Sp(n′, F ) map ωm,n′ → σ ⊗ π′. Since σ and
π are pre-unitary, there exists a C-anti-linear isomorphism σ ⊗ π → σ∨ ⊗ π∨ which is
O(Vm) × Sp(n, F ) intertwining. If ωm,n is defined by ωm,n(g, g′)ϕ = ωm,n(g, g′)ϕ, where
we use the above model for ωm,n, then the map ωm,n → ωm,n defined by ϕ→ ϕ is also a
C-anti-linear isomorphism which is O(Vm)×Sp(n, F ) intertwining. Composing, we obtain
a nonzero O(Vm) × Sp(n, F ) map ωm,n → σ∨ ⊗ π∨. This implies that there is a nonzero
O(Vm)× Sp(n, F )× Sp(n′, F ) map

ωm,n ⊗ ωm,n′ → σ∨ ⊗ σ ⊗ π∨ ⊗ π′,

and by composition with the canonical O(Vm) map σ∨ ⊗ σ → 1, a nonzero O(Vm) ×
Sp(n, F )× Sp(n′, F ) map

ωm,n ⊗ ωm,n′ → π∨ ⊗ π′.

It is easy to verify that

ωm,n
∼= (1,

(
1 0
0 −1

)
) · ωm,n.

Define a map T : S(V n
m)⊗ S(V n′

m ) → S(V n+n′

m ) by

T (ϕ⊗ ϕ′)(x⊕ x′) = ϕ(x)ϕ′(x′).

Define an inclusion Sp(n, F )× Sp(n′, F ) ↪→ Sp(n+ n′, F ) by

(
(
a b
c d

)
,

(
a′ b′

c′ d′

)
) 7→


a 0 b 0
0 a′ 0 b′

c 0 d 0
0 c′ 0 d′

 .

Then it is a standard fact that T gives an isomorphism

ωm,n ⊗ ωm,n′
∼−→ ωm,n+n′ |O(Vm)×(Sp(n,F )×Sp(n′,F )),
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where we regard Sp(n, F )×Sp(n′, F ) as a subgroup of Sp(n+n′, F ) via the above inclusion.
It follows that if we use the inclusion Sp(n, F )× Sp(n′, F ) ↪→ Sp(n+ n′, F ) given by

(
(
a b
c d

)
,

(
a′ b′

c′ d′

)
) 7→


a 0 −b 0
0 a′ 0 b′

−c 0 d 0
0 c′ 0 d′


then we have an isomorphism

ωm,n ⊗ ωm,n′
∼−→ ωm,n+n′ |O(Vm)×(Sp(n,F )×Sp(n′,F )).

Thus, there is a nonzero O(Vm)× (Sp(n, F )× Sp(n′, F )) map

ωm,n+n′ → π∨ ⊗ π′.

By Proposition 4.3, since l ≤ 2n ≤ N = n + n′, there is a nonzero Sp(n, F ) × Sp(n′, F )
map

IN (s0, χ) → π∨ ⊗ π′.

Now by Proposition 3.4 of [K1] (see also the explicit computations in [G]), IN (s0, χ) admits
a filtration of Sp(n, F )× Sp(n′, F ) representations

0 = In+1 ⊂ In ⊂ · · · ⊂ I1 ⊂ I0 = IN (s0, χ)

such that
Ii/Ii+1 ∼= IndSp(n,F )×Sp(n′,F )

P ′
n−i×P ′

n′−i

χ| |s0+
n′−i

2 ⊗ χ| |s0+
n−i
2 ⊗ ρi

for 0 ≤ i ≤ n. Here, ρi is the representation of Sp(i, F ) × Sp(i, F ) on S(Sp(i, F )) defined
by ρi(g, g′)φ(x) = φ(g−1xg′). It follows that for some 0 ≤ i ≤ n,

HomSp(n,F )×Sp(n′,F )(IndSp(n,F )×Sp(n′,F )
P ′

n−i×P ′
n′−i

χ| |s0+
n′−i

2 ⊗ χ| |s0+
n−i
2 ⊗ ρi, π

∨ ⊗ π′) 6= 0.

By Frobenius reciprocity, we obtain

HomM ′
n−i×M ′

n′−i
(χ| |s0+

n′−i
2 ⊗ χ| |s0+

n−i
2 ⊗ ρi,RN ′

n−i
(π∨)⊗ RN ′

n′−i
(π′)) 6= 0.

Hence, there exists an irreducible subquotient π1 ⊗ π2 ∈ Irr(Gl(n − i, F ) × Sp(i, F ))
of RN ′

n−i
(π∨) and an irreducible subquotient π′1 ⊗ π′2 ∈ Irr(Gl(n′ − i, F ) × Sp(i, F )) of

RN ′
n′−i

(π′)) such that

HomM ′
n−i×M ′

n′−i
(χ| |s0+

n′−i
2 ⊗ χ| |s0+

n−i
2 ⊗ ρi, (π1 ⊗ π2)⊗ (π′1 ⊗ π′2)) 6= 0.
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In particular, this implies that χ| |s0+
n′−i

2 = π1.
Now suppose that i < n. Then 1 ≤ n − i ≤ n. By Theorem 2.1, since π is tempered,

1 ≤ |ωπ1(t)| for |t| < 1. Hence,

(n− i)(s0 + (n′ − i)/2) ≤ 0.

So, n− i+ 2n′ + 1 ≤ l. But l ≤ 2n. Therefore, n− i ≤ −2(n′ − n)− 1. Since n′ ≥ n, this
implies that i > n, a contradiction.

Since i = n, we obtain

HomSp(n,F )×Sp(n′,F )(IndSp(n,F )×Sp(n′,F )
Sp(n,F )×P ′

n′−n

(χ| |s0 ⊗ ρn), π∨ ⊗ π′) 6= 0.

By Frobenius reciprocity, this implies that

HomSp(n,F )×P ′
n′−n

(ρn, π
∨ ⊗ ((π′∨|P ′

n′−n
)∨ ⊗ χ| |−s0δ

1/2
P ′

n′−n

)) 6= 0.

Let
ρn → π∨ ⊗ ((π′∨|P ′

n′−n
)∨ ⊗ χ| |−s0δ

1/2
P ′

n′−n

)

be a nonzero Sp(n, F ) × P ′n′−n map. By the lemma on p. 59 of [MVW], there is an
Sp(n, F )× Sp(n, F ) isomorphism

π∨ ⊗ π ∼= ρn /
⋂

f∈HomSp(n,F )×1(ρn,π∨⊗U),
U a C vector space

ker(f).

Let
ρn → π∨ ⊗ π

be the quotient map. It follows that there is an Sp(n, F )× 1 map

π∨ ⊗ π → π∨ ⊗ ((π′∨|P ′
n′−n

)∨ ⊗ χ| |−s0δ
1/2
P ′

n′−n

)

such that
ρn −→ π∨ ⊗ π

↘ ↓
π∨ ⊗ ((π′∨|P ′

n′−n
)∨ ⊗ χ| |−s0δ

1/2
P ′

n′−n

)

commutes. This map is also an Sp(n, F )× P ′n′−n map. Hence,

HomP ′
n′−n

(π, (π′∨|P ′
n′−n

)∨ ⊗ χ| |−s0δ
1/2
P ′

n′−n

) 6= 0.
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By Frobenius reciprocity,

HomSp(n′,F )(IndSp(n′,F )
P ′

n′−n

(χ| |s0 ⊗ π), π′) 6= 0.

Now there is a surjective Gl(n′ − n, F ) map

IndGl(n′−n,F )

PGl
1,...,1

(χ| |n
′−l/2 ⊗ · · · ⊗ χ| |n+1−l/2) → χ| |s0 .

Hence, there is a surjective Sp(n, F ′) map

IndSp(n′,F )
P ′

n′−n

(χ| |n
′−l/2 ⊗ · · · ⊗ χ| |n+1−l/2 ⊗ π) → π′.

This implies that π′ = L(χ| |n′−l/2 ⊗ · · · ⊗ χ| |n+1−l/2 ⊗ π). �
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