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ABSTRACT 

In this  paper  we inves t iga te  the  t h e t a  correspondence for s imi l i tudes  over 

a nonarch imedean  local field. We show t h a t  the  two main  approaches  to a 

t h e t a  correspondence for s imi l i tudes  from the  l i t e ra tu re  are essent ia l ly  the  

same,  and  we prove t h a t  a version of s t rong  Howe dua l i t y  holds for bo th  

construct ions .  

Suppose that  k is a nonarchimedean local field, X is a finite dimensional nonde- 

generate symmetric bilinear space over k, and Y is a finite dimensional nonde- 

generate symplectic bilinear space over k. Let p be the projection from the meta- 

plectic cover of Sp(X | Y) to Sp(X | Y). Fix a nontrivial additive character 

of k, and let r be the corresponding smooth Weil representation of the meta- 

plectic cover of Sp(X | Y). Then the restriction of r to p- l (O(X))p- l (Sp(Y))  

defines a correspondence between the smooth admissible duals of p-1 (O(X))  and 

p- l (Sp(Y)) .  When the residual characteristic of k is odd, this correspondence 

satisfies strong Howe duality. Conceivably, r might be used to construct a repre- 

sentation that  involves similitudes of X and Y, so that a correspondence between 

the smooth admissible duals of some covers of GO(X)  and GSp(Y) could be de- 

fined and analyzed. We consider two such constructions. The first extends the 

restriction of r to p- i (O(X))p- l (Sp(Y))  to a representation w of a larger group 

involving similitudes. Apparently, w was first implicitly introduced in [S], and 
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first explicitly considered in [HK]. The second construction induces the restric- 

tion of r to p-1 (Sp(Y)) to obtain a representation ~t that involves similitudes. As 

far as we know, ~2 first appeared in [SA] in the case of finite fields, and in [PSS] 

in the case of nonarchimedean local fields. In this paper we show that the two 

approaches are essentially the same, and that when the residual characteristic 

of k is odd, a natural version of strong Howe duality holds for the associated 

correspondence. 

The two constructions of a correspondence for similitudes already have proven 

to be valuable tools in automorphic representation theory and its applications. 

Many examples have been considered. As a sample, see [JL], [S], [Co], [So], [HK], 

and [HST]. In particular, the correspondence for similitudes should be useful in 

the investigation of Shimura varieties. It is similitudes that occur in the theory 

of Shimura varieties, not isometries. 

To give a detailed account of our results we need more notation. Let H = 

GO(X).  I f d i m k X  is even, let G' = GSp(Y). I f d i m k X  is odd, let G I be a 

certain two-fold cover of GSp(Y). For g C G' ,  let ~(g) be the similitude factor 

of the projection of g to GSp(Y). Similarly, let A(h) be the similitude factor of 

h E H. Let G be the subgroup of g E G' such that ~(g) E ~(H).  Also, let G1 

and H1 be the subgroups of g E G and h �9 H such that A(g) = 1 and A(h) = 1, 

respectively. Then w is a representation of the group 

R = {(g,h) e G' x H: A(g)= A(h)}, 

and ~ is a representation of G' x H. See sections 2 and 3 for precise definitions. 

In section 1, following [R], [MVW] and [KR], we define Howe duality, multiplic- 

ity preservation, and strong Howe duality. In Proposition 1.1 we show that,  taken 

together, Howe duality and multiplicity preservation are equivalent to strong 

Howe duality. This result is well known to experts. We also state another result 

that is used in the last section. 

In sections 2 and 3 we carefully construct and relate w and ~. After recalling 

some basic facts about the metaplectic covers of similitude groups and splittings 

that follow from [Ra], [B] and [K], we show that the definitions of w and ~2 depend 

on the same fundamental identity in the metaplectic cover. Using the identity, 

we also prove that ~ is obtained from w via compact induction: 

~'~ I xH ~ c - n  ~d. 
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This is the first main result. 

In section 4 we study the correspondence defined by w, assuming that strong 

Howe duality holds for the usual correspondence for isometries. After the key 

observation that  R only involves G, we investigate whether the condition 

HomR(w, ~r | r)  # 0 

for 7r E Irr(G) and T E Irr(H) gives rise to a correspondence satisfying the 

analogues of Howe duality and multiplicity preservation. Given that 7r and T 

correspond, we show in Lemma 4.2 that the equivalence classes of irreducible 

constituents of ~r[al and T]H 1 a r e  paired via the usual correspondence for isome- 

tries, so that  in particular the numbers of equivalence classes are the same; we 

also show that  7rla 1 is multiplicity free if and only if T[HI is multiplicity free. 

This suggests that we restrict attention to representations with multiplicity free 

restrictions to G1 and HI, which we do. Then in Theorem 4.4 we prove that  the 

analogues of Howe duality and multiplicity preservation hold. This is the second 

main result. 

In sections 5 and 6 we consider the consequences of section 4 for ~. First, we 

define a natural G x H subrepresentation ~+ of ~ such that 

~/+ ~ d Gxu w. = c-In 

We prove that  strong Howe duality holds for ~+ with respect to the multiplicity 

free elements of Irr(G) and Irr(H) when strong Howe duality holds for the usual 

correspondence for isometries. Next, we consider whether the condition 

HOmG, xH(~,  7r | r)  • 0 

for r E Irr(G') and T E Irr(H) defines a correspondence satisfying Howe duality 

in the case G # G ~. When G # G ~, dimk X is even and the residual characteristic 

of k is odd, using that ~+ satisfies Howe duality, we give an equivalent condition 

based on Proposition 1.2. This condition is called the theta dichotomy in [HKS]. 

Using the condition, we show in this case that Howe duality does not hold for 

in the stable range. We also point out that when dimk X < dimk Y, that is, when 

the theta dichotomy is expected to hold, strong Howe duality for ~ is expected 

to hold. This is the final main result. 

The main previous general work in this area is, as far as we know, [B]. However, 

the approaches we consider, and the approach of [B], are different. The paper 
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[B] investigates whether the compactly induced representation of r to the meta- 

plectic cover of GSp(X | Y), and the inverse images of GO(X)  and GSp(Y) in 

the metaplectic cover are analogues of r, p-l(O(X)) and p- l (Sp(Y)) .  Complica- 

tions arise since the inverse images of GO(X) and GSp(Y) are poor analogues of 

p-l(O(X)) and p- l (Sp(Y)) .  In particular, the elements of the inverse images of 

GO(X)  and GSp(Y) do not always commute. As a consequence, [B] defines and 

considers a correspondence between sets of representations of the inverse images 

of GO(X)  and GSp(Y) rather than representations. What we call ~ and f2 are 

not what are called w and fl in [B]. Still, we draw heavily on [B] for results about 

the metaplectic group for similitudes. 

We hope these results will be useful in several ways. The simple connection 

between w and ~ should allow results about one representation to be applied 

to the other. As in [R], in the case of isometrics, Howe duality and multiplicity 

preservation for w will have fundamental consequences for the global correspon- 

dence of automorphic representations defined by w. The results of section 4 are 

actually more general then stated above. The abstraction of section 4 may be 

useful in other contexts. These results may be useful in understanding examples 

in the literature. 

We believe that the hypotheses for these results are not too restrictive for 

many applications. Let us consider some of the hypotheses. First, Howe duality 

and multiplicity preservation for ~; require that Howe duality and multiplicity 

preservation hold for the correspondence for isometrics. By a theorem of J.- 

L. Waldspurger [W] this requirement is satisfied if the residual characteristic 

of k is odd. It is conjectured to hold when the residual characteristic even. 

Second, in the above description of Howe duality and multiplicity preservation 

for oJ we need that representations have multiplicity free restrictions to G1 and 

H1. In applications, one often begins with a representation of G or H and 

assumes or proves that there exists a representation of the other group so that  the 

two representations correspond with respect to w. By Lemma 4.2, if the initial 

representation has multiplicity free restriction, then so will the corresponding 

representation: having multiplicity free restriction is contagious. Thus, in the 

case when the initial representation has multiplicity free restriction, Howe duality 

and multiplicity preservation may be applied. Often, one can verify that  the 

initial representation has multiplicity free restriction. For example, when dimk X 

is two or four, cases that  have many important applications beginning with [JL] 
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and [S], all elements of Irr(H) have multiplicity free restrictions [HPS]. Also, if the 

initial representation is generic then it has multiplicity free restriction. On the 

other hand, if the initial representation does not have multiplicity free restriction, 

then by Lemma 4.2 neither will the corresponding representation. In this way 

new examples of representations without multiplicity free restrictions might be 

constructed. 

Finally, we make some remarks about ~. For the purposes of this paper, it 

seems that w is more natural than ~t. In contrast to w, the definition of gt gives 

no indication that  Howe duality should not always hold, or that it should hold 

for ~t +. However, in other contexts it may be useful to consider ~. One example 

might be seesaw reciprocity. Moreover, ~ has a definition independent of w. This 

definition gives the so called extra variable Schrhdinger model, which has been 

useful in some situations. The representations fl and ~+ are not artificial objects. 

The problem of Howe duality for ~ is not completely solved. This problem 

is fundamental and important. Many applications involve G'. See, for example, 

[HST], where the case dimk X = dimk Y = 4 is used. There the correspondence 

between Irr(G') and Irr(H) defined by w is employed. By our results relating 

w and ~, this is equivalent to the consideration of the correspondence between 

Irr(G') and Irr(H) defined by ~t. Also, the problem is deep. As mentioned above, 

in the case dimk X is even, G is a proper subgroup of G' and dimk X < dimk Y, 

Howe duality for ~t is equivalent to theta dichotomy. 

ACKNOWLEDGEMENT: I would like to thank S. S. Kudla for his generous help 

and useful comments. In particular, he kindly allowed me access to his preprints 

[K], [KR] and [HKS], and it was his suggestion that Proposition 3.5 might be 

true. 

We use the following notation. Let J be a group of td-type, as in [C]. This 

means that J is a topological group and every neighborhood of the identity 

element of J contains a compact open subgroup. We will often explicitly assume 

that J has a countable basis. In this case, Shur's lemma holds. See [C]. Let I r r (J)  

be the set of equivalence classes of smooth admissible irreducible representations 

of J.  If ~ E Irr(J)  then r v e I r r (J)  is the contragredient representation of ~r. 

A character of J is a continuous homomorphism from J to C • . The notation 

for induction will be as in section 1.8 of [C]. In section 4 we will also use the 

notation of [GK]. In particular, if L is a closed normal subgroup of J ,  ~ E Irr(L) 
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and g c J,  then gTr E Irr(L) is the representation with the same space as 7r and 

action defined by (g~r)(h) = r(g-lhg), and J~ is the subgroup of g E J such that 

gTr =~ lr. Throughout the paper k is a nonarchimedean local field of characteristic 

zero. Finally, let ( , )k denote the Hilbert symbol of k. 

1. Howe duality and multiplicity preservation 

For the convenience of the reader, we recall the statements of Howe duality and 

multiplicity preservation as in [R], [MVW] and [KR]. Let A and B be groups of 

td-type, with countable bases. Let (p,/~) be a smooth representation of A • B. 

Let r E Irr(A). Define 

b/(Tr) = / 4 /  N ker(t). 
tEHomA(p,~) 

Via p, A x B acts on U(~r). Call this representation p(Tr). By [MVW] there exists 

a smooth representation O(Tr) of B, unique up to isomorphism, such that  

| 

as representations of A x B. Analogous remarks apply for elements of Irr(B). Let 

TO(A) be the set of equivalence classes of 7r e Irr(A) such that b/(~r) # 0. Define 

1rr similarly. We say that  S t rong  Howe d u a l i t y  holds for p if for every 

E TO(A) the representation O(Tr) has a unique nonzero irreducible quotient 

0(7r) E 7r and for every T E Ti(B) the representation O(T) has a unique 

nonzero irreducible quotient t?(r) E TO(A). We say that Howe  d u a l i t y  holds for 

p if the set 

T~(A • B) = {(Tr, T) e T~(A) x T~(B): HOmA• Tr| T) ~t 0} 

is the graph of a bijection between 7~(A) and T~(B). Equivalently, Howe duality 

holds for p if and only if (1) every 7r E Tt(A) occurs as the first entry of an element 

of T~(A x B) and every T E T~(B) occurs as the second entry of an element of 

7~(A x B); and (2) for all 7r E Irr(A) and T1, 7-2 E Irr(B), 

HomAxU(p, Tr| HOmAxS(P,r| ~ TI"~T2; 

for all ~rl, ~r2 E Irr(A) and r E Irr(B), 

HOmAxB(p, rl| TtO, HOmAxB(p, lr2| ~ ri~--Tr2. 
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We say that  m u l t i p l i c i t y  p r e s e r v a t i o n  holds for p if for all ~ E Irr(A) and 

T E Irr(B),  

dimc HomA• Tc | r )  _< 1. 

The three properties are related by the following proposition: 

PROPOSITION 1.1: Strong Howe duality holds for p ff and only if Howe duality 

and multiplicity preservation hold for p. It"strong Howe duality holds for p, then 

the map O: 7r --* Ti(B) is the bijection given by Howe duality. 

Proof'. In the proof we will use the following fact. Let C and D be groups 

of td- type with countable bases. If ~r E Irr(C) is nonzero and 7 and 7' are 

representations of D, then Home(T,  7') ~ HomcxD(ZC | 7, zr |  7 ')  via the map 

that  sends t to 1 | t. 

Suppose that  strong Howe duality holds for p. Let 7r E T~(A). The composition 

p | | 

is a nonzero A • B map, and hence (~, 0(~)) E R ( A  x B). Similarly, if 7 E T~(B), 

then (0(7), 7) E 7~(A • B). This proves (1) of Howe duality for p. To prove (2), 

it suffices to show that  if 7~ E Irr(A) and v E I r r (B)  and HomA• ~r| T) ~ 0, 

then r - -  0( r )  and ~ ~ O(T). Fix anonze ro  A x  B map p ~ ~ rQc7 .  Since 

P(~) = ~ | 0 (~) ,  we have 

N ker( t )  : N N ker( t ) .  
tEHomA (p,~r) U C vector space tEHomA (ppT| 

It  follows that  our map factors through the canonical map p --~ p(~r), so that  there 

is a nonzero A • B map p( r )  --* ~r | T. This implies that  there is a nonzero B 

map 0 (~ )  --* r .  By strong Howe duality for p, T --- 0(~r). Similarly, ~ ~ 0(T). 

Note that  we have also proven the second statement  of the proposition. 

Next, we prove that  multiplicity preservation holds for p. Let ~ E Irr(A) 

a n d T  E Irr(B).  Let T1,T2: p ~  r | 2 1 5  maps. We must show that  

T1 and T2 are linearly dependent. We may assume that  one of the maps is 

nonzero. As a consequence of the last paragraph, we have v ~ 0(n). By the 

above characterization of 

N ker(t) 
t E H o m  A (p,Tr ) 
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it follows that  ker(T1) and ker(T2) contain this set, so that  we can regard T1 

and T2 as maps from p(Tr) ~ ~r | O( r )  to 7r |  0(Tr). Hence, T1 = 1 @ tl  and 

T2 = 1 | for some tl ,  t2 C Homs(O(~r),  0(Tr)). By the uniqueness part  of strong 

Howe duality for p and Schur's lemma, tl  and t2 a r e  linearly dependent, and the 

same holds for T1 and T2. 

Now suppose that  Howe duality and multiplicity preservation hold for p. Let 

7r E TO(A). By (1) of Howe duality for p, there exists r E TO(B) such that  

HOmA• 7r |162 7) ~ O. It  follows that  there is a nonzero A x B map  p0r) -~ 

~r |  O(~r) --+ rc | 7. Hence, there exists a nonzero B map O(~r) ~ T. Thus, 

O(~r) has a nonzero irreducible quotient. To see that  this quotient is unique, 

suppose that  a l  and a2 are subrepresentations of O(~r) such that  O(Tr)/al and 

000 /0 .2  are nonzero and irreducible. We must show that  ~rl = 0.2. Now there 

are nonzero A x B compositions: 

p ~ p(~') ~ Ir | O(~) --~ ~" | 0(:r 

p -+ p(Tr) -+ ~r | O(Tr) --+ ~r |  O(7r)/0.2. 

By (2) of Howe duality, O(~r)/0.1 - r and O(~r)/0.2 ~ T. Fix such isomorphisms. 

We then have nonzero A • B compositions: 

p -~  p ( ~ )  -~  ~ |  e ( ~ )  -~  ~ |  e ( ~ ) / 0 . 1  -~  ~ |  ~, 

p -~  p ( ~ )  --, ~ |  e ( ~ )  -~  ~ |  e ( ~ ) / 0 . 2  ~ ~ |  T. 

By multiplicity preservation, these maps are nonzero multiples of each other. I t  

follows that  the compositions 

e ( ~ )  -~  e ( ~ ) / 0 . 1  - ~  ~, 

o ( ~ )  -~  o ( ~ ) / ~ 2  -~  

are nonzero multiples of each other. Hence, they have the same kernel, i.e., 

O"1 ---- 0"2. m 

We use the following proposition in section 6. Assume that  A is contained in a 

group A' of td- type with countable basis as a closed normal subgroup of index two. 

Let a be a representative for the nontrivial coset of A~/A. Let f T ,A'xB InG'A x B P" 

All of the above definitions apply with f in place of p. To avoid ambiguity, we 

will use subscripts to differentiate objects that  could be defined with respect to 

both  p and p~. 
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PROPOSITION 1.2: If  Howe duality holds for p, then Howe duality holds for pl if 

and only ifT~(A) N a .  T~(A) = 0. If  strong Howe duality holds for p, then strong 

Howe duality holds for p~ if and only if T~( A ) ~ a . T~( A ) = O. 

Proof: We first ment ion a fact tha t  will be used several t imes in the proof. Let  

7r E Irr(A) and T E I r r (B) .  Let  rc' = Ind A' rc. If rc+ is an irreducible const i tuent  

of rc', then 

HOmAxB(P, rc| # 0  ~ HOmA, xB(P',rc + | # 0 .  

This follows from s tandard  general propert ies  of induced representations.  

Suppose tha t  Howe duali ty holds for p. Assume tha t  Howe duali ty holds for 

p', and tha t  R(A)  n a .  TO(A) # 0; we will obtain a contradict ion.  Let  7r E TO(A) 

be such tha t  ax  E TO(A). By ( 1 ) o f  Howe duali ty for p, there exist T, T' E TCv(B ) 

such tha t  

HOmA• rc | T) # O, HOmAxB(p, arc | T') # O. 

Let rc' = Ind A' rc = IndA A' arc. First  suppose tha t  rc ~ arc. Then  rc' is irreducible, 

and 

HOmA, x B (P', 7r' | T) # 0, HOmA, x B (P', rc' | 7"') :fi 0. 

By (2) of Howe duali ty for p', ~- ---- ~-'. This  contradicts  (2) of Howe duali ty for p. 

Suppose next  tha t  zr = arc. Then  rc' = rc+ �9 rc- with rc+, rc- E Irr(A') ,  7r + Z rc-, 

and 

HomA'• rc+ @C r) • O, nomA,• rc-- | z) # O. 

By (2) of Howe duali ty for p~, rc+ - rc-, a contradict ion.  

Now suppose tha t  T~(A) n a .  T~(A) = 0. Let rc' E T~(A'), and let rc be an 

irreducible const i tuent  of rc'Jm. Since P'IA• = P G (a, 1)p, we may  assume tha t  

rc E •(A). By T~(A)Na.Tt(A) = 0 we have rc ~ arc, and so rc' = Ind A' rc. Also, by 

(1) of Howe duali ty for p, there exists T E T~p(B) such tha t  HOmAxB(P, rc|  # 

0. This implies tha t  HOmA, xB(P ~, rc' | T) ~ 0, and proves half  of (1) of Howe 

duali ty for p'. Suppose ~- E T/p,(B). Then  T E T~p(B), and by (1) of Howe dual i ty  

for p, there exists rc E T~(A) such tha t  HOmAxB(P, rc| # O. Let or' = Ind A' rc. 

Since 7~(A)M a .  T~(A) = 0, rc' is irreducible, and so HOmAxB(P',rc' | 7-) # O. 

This completes  the proof  of (1) of Howe dual i ty  for p'. To prove (2) of Howe 

dual i ty  for p', suppose tha t  rc', rc" E Irr(A) and ~- C I r r (B)  are such tha t  

HomA, x B (P', rc' | T) # 0, HOmA, x B (P', rc" | T) # 0. 
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Then  7r', ~r" �9 7r and as we have just  seen, ~r' = Ind A' rrl and ~r" = Ind A' ~r2 

for some ~rl, 7r2 �9 T~(A). Since P'IAxB = P @ (a, 1)p, 

HOmAxB(p, Trl QC 7) # 0 or HOmAxB(p, aTrl |  r )  # 0, 

and 

HOmAxB(p, Tr2 QC "r) r 0, or HOmAxB(p, aTr2 | T) ~ O. 

By (2) of Howe dual i ty  for p, ~rl ~ ~r2 or 7rl --- aTr2. This implies tha t  7r ~ ~d. To 

complete  the proof  of (2) of Howe duali ty for p' ,  let ~r' �9 I r r (A ' )  and r,  T' �9 I r r (B)  

be such tha t  

HOmA, xB(P', 11" |162 r )  ~ 0, HOmA, xB(P', 7C' | r') 7s O. 

Again, ~r' = IndA A' 7r for some ~r �9 7r and 

HOmAxB(p, Tr | "r) r O or HOmAxB(p, aTr |162 T) ~ 0, 

and 

HOmAxB(P, Tr| 7') # 0, or HOmAxB(p, azc| T') # O. 

If  the first and the fourth spaces were nonzero, or the second and the third spaces 

were nonzero, then 7r A a-  7~(A) # 0, a contradiction.  By (2) of Howe dual i ty  

for p, the remaining possibilities imply  tha t  ~- = T'. 

Finally, by Proposi t ion  1.1 and the first s t a t ement  of the proposi t ion,  to prove 

the second s t a t ement  it suffices to show tha t  for 7r' E I r r (A0  and T �9 I r r (B) ,  

d imc HOmA, xB(P', 7r I | T) < 1, 

under  the assumpt ion  of s t rong Howe duali ty for p, Howe dual i ty  for p' ,  and 

7~(A) n a .  TO(A) = 0. We may  assume tha t  HOmA, x B(P', 7r' |162 r )  r 0. As above, 
A ~ for some 7r E T~(A), we have 7r' = Ind A 7r and 

HOmAxB(P, 7r | 7) -~ O, HOmAxB(P, aTr | T) = O. 

Again by Proposi t ion  1.1, to complete  the proof  it will suffice to show tha t  the 

C linear m a p  tha t  takes an element T E HOmA,• I, 7r' QC ~') to Tip composed  

with the project ion ~r ~ |  T --+ 7r | v is injective into HOmAxS(P, lr | T). 

Here, we use the decomposi t ions  P'IAxB = P | (a, 1)p and (Tr ~ |  r ) IAxB = 
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(Tr | T) G (a~r | T). Suppose that T is in the kernel of this map. Then Tip = 0, 

for otherwise HOmA• | T) ~ 0. Since T is an A' x B map this implies 

Ti(a,1)p = 0. Thus, T = 0. I 

Suppose that  Howe duality holds for p and that  TO(A) Cl a .  TO(A) = 0, so that  

Howe duality holds for pt. Then the proof of Proposition 1.2 shows that  TOp, (B) = 

TOp(B), so the subscript is unnecessary. Also, if 7 �9 TO(B) then Ind A' Op('r) is 

irreducible and Op, (T) = Ind A' 0o(T ). Finally, note that TO(A) M a �9 T~(A) = 0 

implies a �9 p ~ p. 

Given subsets Irr0(A) c Irr(A) and Irr0(B) C Irr(B),  we can also define strong 

Howe duality, Howe duality and multiplicity preservation with respect to Irr0(A) 

and Irro(B) by replacing Irr(A) and Irr(B) with Irro(A) and Irro(B), and Tr 

and Tr with T~o(A) = TO(A) N Irro(A) and T/0(B) = TO(B) V~ Irro(B), respec- 

tively. Proposition 1.1 remains true with the new definitions. Proposition 1.2 

also remains true if a �9 Irr0(A) = Irro(A) and Irro(A') is the set of 7r �9 Irr(A') 

such that  the constituents of 7riA lie in Irro(A). 

2. T h e  groups  

In this section we recall some facts about the metaplectic covers of similitude 

groups and the commutativity and splittings of inverse images from [B], [K] and 

[Ra]. Besides preparing for subsequent sections, our purpose is also to show that 

the situation for similitudes is not analogous to that for isometries. 

Let (W, (( , })) be a finite dimensional nondegenerate symplectic vector space 

over k. Assume W r 0. Let GSp(W) be the group of all k linear isomorphisms g 

from W to W such that there exists A �9 k x such that ((gw, gw')) = A((w, w'}/for  

w, w' �9 W. If g �9 GSp(W) then such a A is unique, and will be denoted by )~(g). 

Let Sp(W) be the subgroup of g �9 GSp(W) such that A(g) = 1. Note that we 

regard the elements of GSp(W) as acting on the left. Fix a complete polarization 

W -- U@U* of W. If necessary, we will write the elements of GSp(W) as matrices 

with respect to this polarization. Define an action of k x on Sp(W) by 

(10)  
= S . 

0 y 

With respect to this action, k x ~< Sp(W) ~ GSp(W). The isomorphism is given 

by (10) 
(y,s)  ~ 0 s. 
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If g E GSp(W), we let (1 ~ o )  
g~= ) ,(g)- i  9. 

We recall the construction of the metaplectic cover of GSp(W) from [B]. Let 

C 1 be the group of complex numbers of absolute value 1. To be consistent with 

[K] and [Ra] we will replace C x in [B] with C i . Let Sp(W) act trivially on {+ l}  

and C i.  It  is known that  H2(Sp(W), {5=1}) has order two. Fix a representative 

c for the image of the nontrivial class of H2(Sp(W), {• under the map of 

H2(Sp(W), {-t-1}) to H2(Sp(W), C 1). Let Mp(W) be the extension of Sp(W) by 

C i defined by c. There is an exact sequence 

1 ~ C 1 --~ Mp(W) --* Sp(W) --~ 1. 

The typical element of Mp(W) will be denoted by (s, e), where s E Sp(W) and 

e E C 1. As in Lemma 1.1.B of [B], since H2(Sp(W), {+ l} )  has order two, the 

action of each element of k x on Sp(W) lifts uniquely to an action on Mp(W) that  

acts trivially on C1; since Sp(W) is perfect, for any extension of Sp(W) by C 1 

such a lifting is unique. This action again will be denoted by a superscript. I t  

follows that  there exists a function v: k x x Sp(W) -~ C i such that  

(s, ~)y = (s~, v(y, ~)~) 

for s E Sp(W), e E C l , and y E k x . Consider the semidirect product  k x x Mp(W) 

corresponding to this action. Define a function k x x Mp(W) --* GSp(W) x C 1 by 

(Y' (~' ~)) -~ ( 0 

This function is a bijection. Via this bijection, the set GSp(W) • C i inherits a 

group structure from k • x Mp(W). A computat ion shows that  the group law is 

given by 

(g, ~). (~', ~') = (gg', c (~ ,  g')~') ,  

where C: GSp(W) x GSp(W) ~ C i is defined by 

c(~ ,  ~') = c ( J ,  ~')v(y', s), 

if (y, s) and (y', s') correspond to g and g', respectively. It  follows that  C is a 

cocycle. Denote the extension of GSp(W) by C 1 corresponding to C by GMp(W). 

There is an exact sequence 

1 ~ C 1 --* GMp(W) p GSp(W) ~ 1. 
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The typical element of GMp(W) will be denoted by (g, e), where g E GSp(W) 

and e E C 1 . The equivalence class of GMp(W) does not depend on the choice of c 

or complete polarization. We call GMp(W) the m e t a p l e c t i c  cover  of GSp(W). 

The preceding discussion remains valid if c is assumed to take values in {+1} 

and (21 is everywhere replaced by {+1}. The result is a two-fold cover of GSp(W): 

A 

1 --* {+1} ~ GSp(W) ~ GSp(W) ~ 1. 

A 

There is an inclusion of GSp(W) in GMp(W) such that the following diagram 

commutes: 
GMp(W) , GSp(W) 

GSp(W) , GSp(W). 

Now let (X, ( , )) be a nondegenerate symmetric bilinear space over k of di- 

mension m, and let (Y, ( , >) be a nondegenerate symplectic bilinear space over 

k of dimension 2n. For the remainder of the paper we will assume that  

(w, ( ( ,  >>) = (x,  ( , ) )  | (Y, <, >), 

and that there is a complete polarization Y = U ~ U* such that  U = X | U and 

U* = X | U*. If necessary, we will write the elements of GSp(Y) as matrices 

with respect to the polarization Y = U @ U*. Let GO(X) be the set of all k 

linear isomorphisms h from X to X such that there exists A E k x such that 

(hx, hx') = A(x, x') for x, x' 6 X. If h E GO(X) then such a A is unique, and 

will be denoted by A(h). Let O(X) be the subgroup of h 6 GO(X)  such that 

A(h) = 1. There are inclusions 

GO(X) ,--* GSp(W), GSp(Y) '--* GSp(W). 

We will investigate the preimages p - I ( G O ( X ) )  and p- I (GSp(Y)) .  

First we recall from Proposition 2.2.A of [B] that,  in contrast to the case of 

isometrics, the elements of p - I ( G O ( X ) )  and p - I (GSp(Y))  in general do not 

commute. 

Next, we consider p-1 (GO(X))  and p-1 (GSp(Y)) as extensions of GO(X)  and 

GSp(Y) by C 1 , respectively. The following proposition shows that,  as extensions, 

p - I (GSp(Y))  and p - l (Sp(Y))  are analogous. 
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PROPOSITION 2.1: I f m  is even, then p-I(GSp(Y)) is t r ivia/as  an extension 

of GSp(Y) by C 1. I f  m is odd, then p-I(GSp(Y)) is the metaplectic cover of 

GSp(Y). 

Proof'. We need some notation. We will use notation and definitions from IRa] 

and [K]. This requires a translation, since [Ra] and [K] regard elements of Sp(W) 

as acting on the right. We will implicitly make this translation. As in [B], let 

e l , . . . ,  e,~ and f l , . . . ,  f~ be ordered bases for U and U*, respectively, such that 

e l , . . . ,  e~, f l , . . . ,  fn is a symplectic basis for Y. Let v t , . . . ,  vm be an orthogonal 

basis for X, and let Ol 1 ---- (Vl ,  V l ) , . . .  , Ot m ~- (Vrn, Vm). Then 

vl | e l , . . . ,  Vm | en, 0~11Vl | Yl ,  �9 �9 ", O~mlVrn | fn  

is a symplectic basis for W such that the first mn vectors generate U and the 

second mn vectors generate U*. When we apply Proposition 1.2.A of [B] it will 

be with respect to this polarization and basis. Fix a nontrivial additive character 

r of k. We may assume that c is the unnormalized Rao cocycle corresponding to 

r our polarization and basis. Let fl: Sp(Y) ~ C 1 be the function from Theorem 

3.1 of [K] that  is defined with respect to r and our polarization and basis of Y. 

The function/3 is used to compute the restriction of c to Sp(Y) • Sp(Y) regarded 

as a subgroup of Sp(W) • Sp(W). For details, the reader should consult [K]. 

Suppose that m is even. Let g, g' E GSp(Y). Then 

C(1 | g, 1 | g') = c(1 | g~(9'), 1 | g~)v(A(g'), 1 | gl). 

By Theorem 3.1 of [K], 

A ' 
c(1 | 1 | =  (gi 

By the definition of fl, Proposition 1.2.A of [B], and Corollary A.5 of IRa], 

v(A(g'), 1 | ylJm~l J =/3(gl) -1. 

It follows that 

c ( 1  | g, 1 | g') = 

and thus p- I (GSp(Y) )  is trivial. 
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Suppose m is odd. Let g,g' E GSp(Y). Then by Theorem 3.1 of [K], 

C(1 | g, 1 | g') = c'(g~ (g'), g~)w(A(g'), gl), 

where c': Sp(Y) • Sp(Y) --* C 1 is defined by 

C'(8,  8 l) = ~(S)--1~(8')--1/~(88')C0(8, 8'), 

and w: k • • Sp(Y) --~ C 1 is defined by 

w(y, s) = v(y, 1 | s). 

Here c o is the normalization of c, as in section 5 of IRa]. The cocycle c' is 

nontrivial. Hence, to complete the proof it suffices to show that  w = v ~, where 

v': k • • Sp(Y) --~ C 1 is the function associated to c' as above. By section 5 of 

[Ra], 
c'(s, s') = d(s)d(s ')d(ss ')-lcv(s,  s'), 

for y E Sp(Y), where d: Sp(Y) --* C 1 is defined by 

d ( s ) -  "~(s) 

and m: Sp(Y) ~ C 1 is as in section 5 of [Ra]. Here cv is the unnormalized Rao 

cocycle corresponding to U and r By the uniqueness of v', 

d(s) 
v' (y, = vu (y ,  s). 

a(s~) 

for y E k • and s E Sp(Y). It thus suffices to show that  

w(y, s) d(s) 
vu(y, s) d( y) 

for y E k • and s e Sp(Y). This follows by a computation using Proposition 

1.2.A of [BI. | 

LEMMA 2.2: Assume that the residual characteristic of  k is odd. Suppose that 

m is even, and m >_ 4. I f  X is not the four dimensional anisotropic symmetric 

bilinear space, then [SO(X), SO(X)] = [GO(X), GO(X)].  

Proof'. Let SO(X) '  be the kernel of the spinor norm 0 restricted to SO(X), 

as in section 55 of [O]. By 43:7 and 95:1 of [O], [SO(X),SO(X)] = SO(X)' .  
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It thus suffices to show that  [GO(X),GO(X)] C SO(X)'. Note first that  if 

h �9 GO(X) and hi �9 O(X) then 8(hhlh  -1) = A(h)O(hl). Since the residual 

characteristic of k is odd, there exist coset representatives for G O ( X ) / k  x O ( X )  

that  commute. This can be shown using the Witt  decomposition of X and 

the standard models for the groups of similitudes of two and four dimensional 

nondegenerate symmetric bilinear spaces. See [La] and [HPS] for these models. 

Let h, h' �9 GO(X). There exist h0, h~ �9 GO(X), a, a' �9 k x and hi, h i �9 O(X) 

such that  h = ahohl, h' = a'h~oh'l and h0 and h~ commute. Now 

[h,h'] , I - 1  I ! - - 1  --1 I - - 1  I - - 1  = hoho(h o h lho)h lh l  (ho hi ho)(hoho) �9 

It follows that  8([h, h']) = 1. | 

The next proposition shows that,  as extensions, p -  1 (GO (X)) and p -  1 (O (X)) 

are not analogous. 

PROPOSITION 2.3: Assume that the residual characteristic o f  k is odd. I f  m is 

odd, m = 2, or m = 4 and X is anisotropic, then p- I (GO(X))  is trivial as an ex- 

tension of  G O ( X )  by C 1 . I f  m is even, m >_ 4, and X is not four dimensional and 

anisotropic, then p- I (GO(X))  is trivial i f  and only i f  the character of  GSO(X) 

defined by h ~ ( -1 ,  A(h))~ is trivial. 

Proo~ We may assume that  c is as in the proof of Proposition 2.1. Let h, h' C 

GO(X). By Proposition 1.2.A of [B], 

C(h | 1, h' | 1) = (det(h), A(h'))~. 

If m is odd then the statement follows from the identity 

(det(h)/A(h)(m-1)/2) 2 = A(h) 

for h �9 GO(X). 

Suppose m is even. The following argument was suggested to me by S.S. 

Kudla. As usual, let GSO(X) be the kernel of the homomorphism from GO(X) 

to k x defined by h ~ det(h) /A(h)  m/2. Let r �9 O(X) be a symmetry as in 42E 

of [O]. Then GO(X) = GSO(X) ~ (T). Define "r: GSO(X) --* C 1 by "y(h) = 

~/k(A(h), r  Here "Yk is the Weil index as in the Appendix of [Ra]. Then by 

Theorem A.4 of [Ra], 

C(h | 1, h' | 1) = ~(h)-1"/(h')-l"7(hh') ,  
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for h, h' E GSO(X).  Let ~( be a unitary character of GSO(X).  Define i: GSO(X) 

p - I ( G O ( X ) )  by i(h) = (h | 1,x(h)~/(h)). Then i is a homomorphism, and 

any homomorphism i' from GSO(X) to p - I ( G O ( X ) )  such that  p(i'(h)) = h | 1 
is of this form. It follows that  p - I ( G O ( X ) )  is trivial if and only if there exists a 

X and e E {• such that 

i(ThT--') = (T | 1, e)i(h)(v | 1, e) -1. 

A computation shows that this is equivalent to the existence of a ~( such that  

X([T, h]) = ( -1 ,  A(h))~ 

for h E GSO(X).  By Lemma 2.2 it now suffices to consider the case m = 2 and 

the case m = 4 and X is anisotropic. In these cases, using the standard models 

mentioned in the proof of Lemma 2.2, one can show that such a X exists. | 

3. The representat ions 

Let (r, S) be a model of the smooth Weil representation of Mp(W) corresponding 

to r In this section we give a unified account of the two approaches mentioned 

in the introduction to constructing an analogue for similitudes of the restriction 

of r to p- l (O(X) )p - l (Sp (X) ) .  Our main point is that both constructions, as 

well as their relationship to each other, depend on the fundamental identity of 

Lemma 3.2. To avoid groups that are not of td-type, and to make applications 

easier, we will introduce splittings whenever possible. The development does not 

depend on these splittings, and one could avoid their introduction by proceeding 

as in [MVW] or [B]. In this section c is as in the last section. 

To make the key observation, suppose for the moment that  c is the Rao cocycle 

from the proof of Proposition 2.1 and (r, $)  is the Scrhdinger model corresponding 

to the polarization W = U | U* as in [B]. Then GO(X)  acts naturally on $(U*) 

via left translation, and 

r ( (  A(h)-I O1) (h | l ), e)~(x) = e , A ( h ) , - ~ (  (h-~ | l )x ) 

for ~ E $ = $(U*), h e GO(X) and e E C 1. This suggests that  instead of the 

natural image of GO(X) in GSp(W) we should consider the isomorphic subgroup 

generated by the elements 
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for h E GO(X).  

The next proposition shows that,  as extensions, the preimage of this subgroup 

and p - l ( O ( X )  ) are analogous. 

PROPOSITION 3.1: The preimage under p of the above subgroup is trivial as an 

extension of GO(X) by C I . 

Proot~ We may assume that c is as in the proof of Proposition 2.1. A computa- 

tion shows that the restriction of C to the preimage is 1. I 

Fix a splitting of the preimage. That  is, fix a monomorphism L: GO(X)  

Mp(W) of the form 

for h E GO(X).  If h E O(X),  we will write h for L(h). 

The following lemma is the analogue of the commutativity of the inverse images 

in the case of isometries. 

LEMMA 3.2 (Fundamental identity): I f h  E GO(X)  and g E p - l (Sp(Y) )  then 

L(h)gL(h) -1 = g~(h) -1. 

Proof." Now L(h)p- l (Sp(Y) )L(h)  -1 = p- l (Sp(Y)) ,  so that g ~-* L(h)gL(h) -1 

defines an automorphism of p- l (Sp(Y)) .  Moreover, this automorphism fixes C 1 

pointwise, and p(n(h)gL(h) -1) = p(g) ~(h)-I for g E p-I (Sp(Y)) .  Since Sp(Y) 

is perfect there can be at most one such automorphism, and the lemma follows. 

I 

If m is even, let G ~ = GSp(Y). If m is odd, let G' be the two-fold cover of 

GSp(Y) discussed in the last section, and for g E G', let A(g) be the similitude 

factor of the projection of g to GSp(Y). Let G1 be the subgroup of g E G ~ such 

that  A(g) = 1. Let y E k x; if m is even, let d(y) E G' be 

if m is odd, let d(y) E G' be 1 )1/ 
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The map  y ~-* d(y) is a homomorphism. If m is even, then by Proposit ion 2.1 

p - I ( G S p ( Y ) )  is trivial as an extension of GSp(Y) by C 1 . In this case, fix a split- 

ting G' ~ p - I ( G S p ( Y ) ) .  If m is odd, then by Proposition 2.1, p - I ( G S p ( Y ) )  is 

the metaplectic cover of GSp(Y). In this case, fix an inclusion G ~ r p - l ( G S p ( Y ) )  

as discussed in the last section. In what follows, we will implicitly use the inclu- 

sion of G ~ in GMp(W). Note that  by an argument similar to the proof of Lemma 

3.2, if y �9 k x and g �9 GMp(W) then 

d(y) - lgd(y)  = gY. 

Let H1 -- O(X)  and H = GO(X) .  

When m is even, the following proposition appears in [HK]. It  is implicit in 

IS]. 

PROPOSITION 3.3 (Shimizu-Harris-Kudla): Define an action of H on G1 by h �9 

g = g A(h)-I and form the semidirect product G1 )4 H. The map G1 )4 H --. Mp(W) 

defined by (g, h) ~-* gL(h) is a homomorphism. Let 

R = {(g,h) �9 G' • H: A(g) = A(h)}. 

The map R --* G1 >~ H defined by 

(g, h) ~-* (gd(A(g)) -1, h) 

is a homomorphism. Thus, the composition 

R --* G1 )~ H --~ Mp(W) Z_~ Autc ($ )  

is a homomorphism. This representation is smooth. 

Proo~ This follows by the fundamental  identity and standard arguments. | 

We call w the e x t e n d e d  Wei l  r e p r e s e n t a t i o n  associated to X and Y. The 

name is a consequence of the important  fact that  

w(g, h) = r(gh) 

f o r g E G 1  a n d h E H 1 .  

The proof of the next proposition is similar. We are not certain to whom this 

proposition should be credited. 
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P R O P O S I T I O N  3.4: Let f~ = c-Indaa' r. For each h E H, define an operator ~(h) 

on the space T of fl by 

(f~(h)f)(g) = r(L(h)) . f (d(A(h))- lg) .  

Then the map 

f~: G' x H ~ Auto(T)  

defined by (g, h) H fl(g)~(h) is a homomorphism. This representation is smooth. 

We call ~ the i n d u c e d  Wei l  r e p r e s e n t a t i o n  associated to X and Y. To see 

that  (~, T)  is the same representation as in the papers mentioned in the intro- 

duction, suppose again that c is the Rao cocycle from the proof of Proposition 

2.1 and ( r ,S)  is the above Schr6dinger model. Define T --~ S(U* x k • ) by f ~-~ r 

where 

r y) = f (d (y ) - l ) ( x ) .  

This map is an isomorphism of C-vector spaces. The resulting action on S(U* • 

k x ) i~: 

f~(1, h)r y) = I A ( h ) [ - ~ r  -1 | 1)x, A(h)y), 

f/(s, 1)r y) = r(sY)(r 

f~(d(a), 1)r y) = r a- ly ) ,  

where h E H,  s C G1, a E k x, and r  r  

The next proposition, which seems to be new, relates the extended and induced 

Weil representations. 

PROPOSITION 3.5: We have 

47 f~ " I xH = c - n  w. 

' H Proo~ Define T: fl -~ c-Ind~ • w by T( f ) (g ,h )  = (f l (g ,h)f ) (1) .  Again, 

standard arguments and the fundamental identity show that  T is a well defined 

isomorphism. | 

In the next section we prove that  the analogue of Howe duality and multiplicity 

preservation hold for w, and in subsequent sections we investigate, via Frobenius 

reciprocity, the consequences for fL Since in some cases R fails to involve all of 

G ~, we require an intermediate group and representation. 
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Let G be the group of g E G' such that A(g) E A(H). Then G = G' except if 

m is even and the Witt  index of X is (m - 2)/2, and if m is odd. In the first 

case, X has Wit t  decomposition: 

X ~ - K • 1 7 7  

Here H is the hyperbolic plane over k, K is a quadratic extension of k, and the 

symmetric bilinear form on K is given by (x, y) ~-~ a Tg(x~) ,  where - is the 

nontrivial element of Gal(K/k), and a E k • By the uniqueness of the Witt  

decomposition, A(H) NKtK x~ = k~ j, so that [G': G] = [k• NK(K• = 2. In the 

second case, A(H) = k • Thus, in this case, [G': G] = [kX: k x2] > 1. Evidently, 

G is a closed subgroup of G ~. 

Define a smooth subrepresentation (~2 +, T +) of ~2[a in the following way. Let 

T + be the C subspace of f E T supported in G. The restriction of fl to G • H 

acts on T +, and we call the resulting representation ft +. As above, there is an 

isomorphism 
~+ ~ dGxH ~. = c-In 

In the next three sections, we show that strong Howe duality holds for F/+ with 

respect to certain natural subsets of Irr(G) and Irr(H),  while ~2 does not always 

satisfy strong Howe duality. 

In the next section we will use the following fact: there exist closed subgroups 

Z c Z(G) and Z ~ C Z(H) and an isomorphism t: Z --* Z' such that  G/ZGI and 

H/Z'HI are finite abelian groups, and w(z,L(z)) = X(z) for a character X of Z. 

4. H o w e  duality and multiplicity preservation for  w 

Consider WIal• 1. As a consequence of a more general theorem of J.-L. Wald- 

spurger that appears in [W] we have: 

THEOREM 4.1 (Waldspurger): If the residual characteristic of k is odd then 

strong Howe duality holds for wla 1 xn~. 

Let Irro(G) be the set of zr E Irr(G) such that  7r[a 1 is multiplicity free, and 

let TOo(G) be the set of ~r E Irro(G) such that  some constituent of ~rla ~ lies in 

7r Define Irro(H) and TOo(H) similarly. Here 7r and TO(H1) are defined 

as in section 1, with respect to wla~xH 1. In this section we will prove that  the 

condition 

Homn(w, ~r | r) # 0 
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for lr E Irro(G) and v E Irro(H) defines a bijection between 7~o(G) and 7~0(H), 

and that 

dimc HomR(w, ~r | T) < 1 

for 7r E Irro(G) and T �9 Irr0(H). Thus, we will show that the analogues of (1) 

and (2) of Howe duality and multiplicity preservation hold for w. 

As we shall see, these results depend only on general properties of w, and 

Theorem 4.1. Thus, in this section we work with an abstraction of w that satisfies 

the conclusion of Theorem 4.1. Perhaps the theory will apply to other situations. 

Our main tool is the restriction theory of [GK]. 

In this section we will assume the following. Let G and H be groups of td-type 

with countable bases. Let G1 and H1 be closed normal subgroups of G and H 

respectively, and let Z and Z' be closed subgroups of Z(G) and Z(H), respectively. 

We assume that ZG1 and Z'H1 are closed and that G/ZG1 and H/ZrH1 are finite 

abelian groups. It follows that ZGa and ZrH1 are open. We assume that the 

maps of Z • G1 to ZG1 and of Z ~ • H1 to Z~H1 are open. This implies that if 

r �9 Irr(ZG1) and r E Irr(Z'H1) then riG, E Irr(G1) and T[H 1 ~. Irr(H1). We 

will often regard elements of Irr(ZG1) and Irr(Z'H1) as elements of Irr(G1) and 

Irr(H1), respectively. Let R be a closed normal subgroup of G • H such that for 

every g E G there exists h E H such that (g, h) E R, and that for every h E H 

there exists g C G such that (g, h) E R. Assume that 

G1 • c R ,  ( G •  N R = G I •  ( l x H )  N R = l x H 1 .  

Assume that there is an isomorphism L: Z --* Z' such that {(z, e(z)): z E Z} C R. 

Then (G1 • H1){(z, e(z)): z E Z} is closed in R, and there are isomorphisms 

G/ZG1 ~- R/(G1 x H1){(z,~(z)): z �9 Z} ~- H/Z'H1. 

Let (w, ,9) be a smooth representation of R. Finally, assume that there exists a 

character X of Z such that w(z, e(z)) = X(z) for z E Z, and that strong Howe 

duality holds for wiG1 xH1. 

We have the following basic lemmas. 

LEMMA 4.2: Let lr E Irr(G) and r E Irr(H). Suppose that 

HomR(w, ~r | r) r O. 
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T h e n  

7rig 1 ~ m -  r l  @- . .  G m "TrM, TIH 1 ~- m ' .  0(7;1) ( ~ ' ' "  (~ ri2 I .  O(7rM) , 

where t h e  ~ri are p a i r w i s e  i n e q u i v a l e n t  e l e m e n t s  o f  7r a n d  m and m ~ are 

p o s i t i v e  integers. M o r e o v e r ,  m = 1 i f  a n d  o n l y  i f  m ~ -=- 1. 

Proof." By Lemma 2.1 of [GK], 

~rlza  ~ ~-- m �9 Trl @ �9 �9 @ m �9 ~rM, ~'IZ'H~ ~- m ~ " r l  G " �9 �9 �9 m '  �9 rM '  

where the 7rl �9 I r r ( Z G 1 ) a r e  pairwise inequivalent, the Tj �9 I r r ( Z ' H 1 )  are pair- 

wise inequivalent, and m, m' ,  M,  and M ~ are positive integers. I t  follow that  the 

r i  are pairwise inequivalent elements of Irr(G1) and the rj are pairwise inequiv- 

alent elements of Irr(H1). Let V and W be the spaces of Ir and T, respectively, 

and let V/and  W j  be the spaces of m .  7ri and m '  �9 Tj respectively, so that  

Y = VI(~) . . . (~VM, W--~ W I ( ~ . . . ~ W M , .  

By the proof of Lemma 2.1 of [GK], G and H act transitively on the 17/and Wj, 

respectively. 

Now let w --+ 7r |  T be a nonzero R map. Since this map is nonzero, we may 

assume, after renumbering, that  the composition 

S ~ V Q c  W ~ V~ |  W I  

is a nonzero G1 x H1 map. Here the second map is projection. Fix i between 1 

and M. Let g E G be such that  ~r(g)V~ = Vi. F i x  h c H such that  (g,h)  �9 R. 

There exists j ( i )  between 1 and M '  such that  "r(h)W~ = W j (  O. Consider the 

nonzero composition 

S ~ $ --* V @c W ~ V1 @c W1 ~ V~ | Wj(0- 

Here the first map is given by ~ ~-* o~(g-1, h - 1 ) ~  and the last map  is ~ r ( g ) Q T ( h ) .  

A computat ion shows tha t  this map  is the G1 x H1 map  

S ~ V | W --* V/ |  W~(i), 

where the last map is projection. By composing with another projection, we 

obtain a nonzero G1 x H1 map 
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Hence, Tj(i) ~ 0(lri). We have established the existence of a map  i H j ( i )  so 

that  Tj(i) ~ 0(~h). Similarly, there exists a map j ~-* i ( j )  so that  Try(j) --- 0(~'j). 

Clearly, these maps are inverses of each other. The first assertion of the lemma 

now follows. 

Next, we show that  the image U of the nonzero G1 x H1 map 

$ --* V |  W --* V1 | W1 

is isomorphic to Irl | 0(7rl) as a G1 x H1 representation. Since V1 is the direct 

sum of copies of 7rl as a Gt  representation, 

0 ker(t) = N ker(t). 
tEHomc1 (6",V1) tEHomt~ 1 (w,~l) 

This implies that  the above map  factors through the map 

(M ~ 5d(Tr1) ~ 7r I |  O(Tr l ) ,  

which in turn implies that  our map factors through the map  

.~ -~  ~rl |  0 (~1) .  

This proves our claim. 

Suppose now that  m --- 1. By the lemma on page 45 of [MVW], there exists 

an H1 subspace W '  of W1 such that  U = V1 | W' .  By the result of the last 

paragraph,  W '  - 0(1rl) as an H1 space, and so W ~ is irreducible as an H1 space. 

Suppose that  m ~ > 1. Then there exists h C H such that  r(h)W1 = W1 and 

7"(h)W' N W '  = O. Let g E G be such that  (g, h) E R. Evidently, 7r(g)V1 = V1. 

By the definition of U, since 7r(g)V1 = V1 and r ( h ) W 1  = W1, U is invariant under 

Ir(g)| Tha t  is, V l |  = VI |  This contradicts " r ( h ) W ' A W '  = O. 

Hence m '  -- 1. The converse has an entirely analogous proof. | 

For the notat ion G ~  and H n in the s tatement  of the following lemma, see the 

end of the introduction to the paper. 

LEMMA 4.3: Let  7rl E Irr(ZG1),  and assume that  1rl has an extension ~11 E 

Irr(G.1) .  Let  Vl E I r r (Z 'H1) ,  and assume that  there exists a nonzero 

R N (ZG1 • Z 'H1)  map  

T: w --* "K 1 | TI" 
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Then there exists an extension ~ �9 I r r ( H n )  of T1 to H~, such that T is a 

R n (G~, x H n ) map from w to ~ @c ~ .  Moreover, the analogous results hold 

if the roles of ZG1 and Z'H1 are interchanged. 

Proo~ We show first that  it suffices to prove that  there exist some extensions 

~r'~ �9 I r r ( G ~ )  and ~ �9 I r r ( H ~ )  of ~rl and 71, respectively, such that  T is an 

R A (G~I x H~ 1 ) map. For suppose such extensions exist. By Lemma 2.4 of [GK] 

there exists a character v of G ~  such that  ~ = v | ~ and v(ZG1) -- 1. Define 

a function 

H.~/Z'H1 ~ G, h/ZG1 

by hZ~H1 ~ gZG1, where g �9 G is such that  (g,h) �9 R. To show that  this map 

is a well defined isomorphism it suffices to show that  if (g, h) �9 R and g �9 G.~ 

then h �9 H ~ ,  and if (g,h) �9 R and h �9 H~I then g �9 G.~. Let (g,h)  �9 R and 

assume g �9 G~ 1 . Since 

HomGlxH~(W, Trl | ~'1) ~ 0 : : ~  HomGlxH~(W,~rl | hT1) ~ 0, 

it follows that  T1 -- h~-i as H1 representations, and hence as ZIH1 representations. 

So h �9 H ~ .  The other s tatement has a similar proof. Now let vl: H~I ~ C • be 

the composition of v with the above map. Let ~ = v ~ | ~ -  Then if (g, h) �9 

R N ( G ~  N H~I ) and ~ �9 S, 

T(w(g, h )~) = ( ~ ( g )  | ~'l ( h ) )T( ~) 

=(~'-11(g) | ~ ( h ) )T( ~). 

Now we prove that  such ~ and ~ exist. Let L be the subgroup of G • H 

generated by R A (G~ 1 • H~ 1 ) and Z • Z ' .  We claim that  ~rl |  r l  extends to an 

element of Irr(L) so that  T is an RN (G.  1 • H~I ) map. To this end, we prove that  

w( g, h ) ker( T ) = ker(T) for (g, h ) E RA(  G~ • H~I). Let (g, h ) �9 R n (  G,~ • Hn ). 

There is an isomorphism g-l~h | h-iT1 ~ 7Cl | T1 of G1 x H1 representations. 

Let T r be the composition of the three maps: 

w ~ (g - l ,  h-1)w ~ g-17r 1 | h-iT1 ~ ~rl | T1. 

Here the first map is given by ~ ~ w(g, h)~ and the second by ~ ~ T(~) .  Then 

T r is a G1 • H1 map. By multiplicity preservation, there exists c E C x such 

that  T' = cT. It  follows that  T(w(g, h)ker(T)) = 0. Now since w(g, h)ker(T) = 
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ker(T) for (g, h) e RA(G,~ x H~I), and since T is surjective, we can define a rep- 

resentation of R N (G,  1 x H~I ) on the space of 7rl | r l  extending (1rl | 0-1)[a~ x H1- 

This representation is compatible with the representation (~rl | r l)[z• z,, so that  

we obtain an extension of ~rl | r l  to an element of Irr(L). Now L is an open 

normal subgroup of G.~ x H~ and (G,~ • H~ )/L is a finite abelian group. By 

Lemma 2.3 of [GK], there is an element ~ | ~1 of Irr(G~l • H~-~ ) whose restric- 

tion to L contains our extension of 7rl | Vl to L. Since in fact ~11 and ~ are 

extensions of 7r1 and rl ,  the proof is complete. | 

We come now to the main theorem. We remind the reader that if G, H,  etc., 

are as in the last section, then the following theorem requires that the residual 

characteristic of k is odd. 

THEOREM 4.4: Let lr E Irr0(G). 

(1) (Howe duality) Assume that some constituent 7rl of ~r[a~ lies in TO(G1). 

Then there exists r 6 Irro(H) such that 

Homn(w, ~ | r )  # 0; 

(2) (Howe duality) Suppose that r,  T' 6 Irr(H).  Then 

Homn(w, 7r | "1-) r 0, Homa(w, lr | r') # 0 ==~ r ~ r'; 

(3) (Multiplicity preservation) Suppose that r E Irr(H).  Then 

dime HomR(w, ~r | r )  _< 1. 

Moreover, the analogous results hold if the roles of G and H are interchanged. 

Proof of (1): We begin with some definitions. Let V be the space of ~r, and let 

V1 C V be the space of ~rl. Since 1rig 1 is multiplicity free, G~I is the group of 

g 6 G such that lr(g)V1 = V1. Let ~ be the extension of ~rl to G ~  defined by 

~ ( g )  = 1r(9) for g E G ~ .  Let T1 = 0(Th) E Irr(H1), and let T: w ~ ~rl |  r l  be 

a nonzero G1 x H• map. Let W1 be the space of T1. Finally, let a be the central 

character of ~r. 

We first define an extension of r l  to a representation of Z'H1 so that  T is an 

R ~ (ZG1 x Z'H1) map. Let 3 = ( o r  o b -1. Define rl(zhl) = •(z)rl(hl) for 

z E Z t and hi E HI.  To see that this defines an extension of T1 to an element 
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of Irr(Z~H1) it suffices to show tha t  if z E Z '  A H1 then rl(Z) = fl(z). Let 

z E Z ~ fq H1 and ~ E S. Then  ( t - l ( z ) , z )  E G1 • H1 and 

T(w(t.-l(z), z)tfl) =(X o t-1)(z)T(~),  

(1 | TI(z))T(~) =~(z)T(~).  

Since T is surjective, vl(z) = ~(z). For the remainder  of the proof, we regard ~'1 

as a representat ion of Z~H1. Then  T is evidently an R N (ZG1 • Z~H1) map. 

Now let ~1 be as in L e m m a  4.3, and let T be an element of I r r (H)  such tha t  

is a const i tuent  of TIH~. Such a 7- exists by L e m m a  2.3 of [GK]. We will define 

a nonzero R map  from w to 7r |  T. Let A be the finite set R/(RN (G~ • H.:~ )). 

There is an act ion of R on A. We will denote by (g, h) the element of A determined 

by (g, h) E R. For a = (g, h) E A, define T~: w --* 7r |  T by 

Ta = (Tr(g) @ r(h)) o T o w(g -1, h - l ) .  

Since T is an R fq (G .  1 • H~ 1 ) map,  the definition of T~ does not  depend on the 

choice of representative for a. Note tha t  if (g, h) E R and a E A then 

To o.:(g, h) = (~(9) | T(h)) o T(~-l,h-1)o. 

Define T ' :  w --~ 7r |  r by 

T ' =  ~-~Ta. 
aEA 

Then  T ~ is an R map.  Finally, T ~ ~ 0. To see this, note first tha t  if a = (g, h), 

then the image of  T~ is 7r(g)V1 | 7(h)W1. I t  follows tha t  im(T~) ~ im(T~,) as 

G1 • H1 representat ions if and only if a = aC Hence, the C subspace spanned 

by the im(T~) for a E A is the direct sum of these subspaces, and T t ~ 0. 

Proof of (2): Assume the nonvanishing of the homomorph i sm spaces. Let 

and /3 ~ be the central  characters of r and r ~, respectively. We first prove tha t  

~lz' = ~Iz' .  Let T: w --* 7r @c T be a nonzero R map.  Let ~ E S be such tha t  

T(qo) # 0. Let  z E Z. Then  

T(w(z, t(z))q0) : (rr(z) | v(t(z)))T(q0), 

X(z)T(v) = ~(z)Z(4z))T(~).  

Hence, XIz = a .  fl o ~lz. Similarly, XIz = c~. fl' o ~lz. Thus,  Blz'  = f l ' lz ' .  
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By Lemma 4.2 and its proof, since/31z, = j3'Iz,, TIZ,H 1 and 7'IZ, H ~ are multi- 

plicity free and equivalent. By Lemma 2.4 of [GK], there is a character v of H 

trivial on Z'H1 such that  T' ~- V | T. 'We claim that  v = 1. We will use the 

notation of Lemma 4.2 and its proof. Since v '  - v | v, there exist nonzero maps 

T: S ~ V | W, T':  S ~ V | W 

such that  T is an R map, T '  is a C linear map satisfying 

T' (w(g, h)~) = v(h)(Tr(g) | r(h)  )T ' (~)  

for ~ E S, (g, h) e R, and the compositions 

S T-~ V|  w V I |  , S '  T' ---* V | W ~ Vl | W1 

are nonzero, where the last maps are projection. Let t and t ~ denote these last 

nonzero G1 x H1 maps, respectively. By multiplicity preservation, there exists 

nonzero c E C such that  t t = ct. By the proof of Lemma 2.4 of [GK] it suffices to 

show that  v ( H ~  ) = 1. Let h �9 H~,. Since T[H t is multiplicity free, T(h)W1 = W1. 

Let g �9 G be such that  (g, h) �9 R. Then r(g)V1 = V1. Let qo �9 ,S be such that  

t ' (~) = ct(cp) r O. Then 

t'(02(g, | 

c(Ir(g) | v(h) )t(~) =cv(h)(~r(g) @ T(h) )t(~).  

Hence, v( h ) = 1. 

Proof  of  (3): Again we will use the notation of Lemma 4.2 and its proof. We 

may assume that  

dimc HomR(02, 7r |  T) r 0. 

By Lemma 4.2, TIH 1 is also multiplicity free. Let T1, T2 E HomR(w, 7r @c r) .  For 

each i between 1 and M ,  let 

Pi: V | W --* V~ | Wj(i) 

be the projection map. Since 

dimc H o m a ,  xHt (03, 71 1 | T1) = 1, 
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it follows that  there exists c E C such that  pl  o T2 = cpl O T 1 . Fix i between 1 and 

M. As in the proof of Lemma 4.2, there exists (g, h) E R such that  7r(g)V1 = V~, 

7(h)W1 = Wj(  0 and 

pi o T1 = (~r(g) | T(h) ) o pl  o T1 o w(g-1, h - l ) .  

It  follows that  Pi o T2 = cpi o TI for all i. Since the images of T1 and T2 lie in the 

direct sum of the V/ |  Wj(O for i between 1 and M, it follows that  T2 = cT1. 

| 

5. Frobenius reciprocity and strong Howe duality for ~§  

We now show that  strong Howe duality holds for ~+ with respect to Irr0(G) and 

Irro(H).  Via Frobenius reciprocity, this is a consequence of the main result of 

the last section. 

LEMMA 5.1: lrfTr C Irr(G) and 7- E I r r (H)  then there is a (2-isomorphism 

Homn(w, ir |  ~') = HOmG• +, 7r | T). 

Proof." Since An  = 1, AG• ---- 1, and (Tr | T)V[R v = 7r | % by Frobenius 

reciprocity as on page 24 of [BZ], 

Homn(w, 7r |  T) - Homa• • ~,  7r | T). 

Since t2 + ~ c-Ind~ xH ~, the lemma follows. | 

THEOREM 5.2: / f t h e  residual characteristic o f k  is odd, then s trong Howe dual i ty  

holds for fl + wi th  respect  to Irro(G) and Irro(H).  

Proof'. By Proposition 1.1 and Theorem 4.4, it suffices to show that  7r and 

7r as defined in the last section are 7r N Irro(G) and Tr N Irr0(H),  

respectively. By Theorem 4.4 and Lemma 5.1, 7-4o(G) C 7r N Irro(G) and 

7~o(H) C 7r I r ro (g) .  Let ~r E T4(G)N Irro(G). Let c- Ind~•  --* ~r 

be a nonzero G map. There exists a closed subgroup Z"  C Z ~ such that  R A 

(1 x Z ' )  = 1 and (G x H ) / R ( 1  x Z ' )  is finite. It  follows that  there is a G1 
R t ~ R ( l x Z ' )  map c - I n d  ( l x z ' ) a )  ~ 71" and an R map w -+ c -ma R w such tha t  the 

composition 
. R ( l x Z " )  

~d --~ C-lnO n 03 --+ 71" 

is nonzero. Hence, 7r E T~o(G). The proof of the remaining statement  is analo- 

gous. | 
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6. T h e  p r o b l e m  of  H o w e  dua l i t y  for  

In this last section we consider Howe duality for ~ when G ~ G I, m is even and 

the residual characteristic of k is odd. In Lemma 6.1, using Proposition 1.2, we 

give a condition equivalent to Howe duality for g/. Using the condition, we prove 

that  Howe duality for f~ does not hold in the stable range m _> 4n + 2. Since the 

condition is being currently investigated, we can also show that,  conjecturally, 

strong Howe duality for ~ holds for m < 2n. 

For the remainder of this section we will assume that m is even and the Wit t  

index of X is (m - 2)/2 so that  [GI: G] = 2. We need some additional notation. 

Let K and a be as at the end of section 3. Let a ~ be a representative for the other 

coset of k• • besides a N ~ ( g •  Let X2 = X~ = g .  Define symmetric 

bilinear forms on X2 and X~ by (x,y) = aWg(x~) and (x,y)' = a 'Wg(x~).  

Then (X2, ( , )) and (X~, ( , )1) have the same determinant but opposite Hasse 

invariant. As in section 3, (X, ( , )) is the orthogonal direct sum of (X2, ( , )) 

and (m - 2)/2 copies of the hyperbolic plane. Let (X', ( , ) ' )  be the orthogonal 

direct sum of (X~, ( , ) 1 )  and ( m -  2)/2 copies of the hyperbolic plane. Note that  

G is also the group of g E G I such that  there exists h E GO(X ~) such that there 

A(h) = A(g). To avoid confusion, we will write 7r X)  for 7r defined with 

respect to X; 7r X'), Ti(G1, X) and Ti(G1, X I) are similarly defined. Finally, 

we remark that  if the residual characteristic of k is odd then the subscript 0 is 

unnecessary since in this case [G: k• = [H: k• = [NK(K• k • = 2. 

See [GK]. 

LEMMA 6.1: Assume the residual characteristic o[ k is odd. Then 
(1) I[Ti(G1, X) A TO(G1, X I) = 0 then strong Howe duality holds for ~;  

(2) I[Tr A Ti(G1,X') ~ 0 then Howe duality [or ~ does not hold. 

Proof Let g be a representative for the nontrivial coset of GI/G. By Lemma 

4.2, part (1) of Theorem 4.4 and Lemma 2.3 of [GK], TO(G, X) A gTi(G, X) = 0 
if and only if ~ ( G 1 , X ) A  gTC(GI,X) = 0; note that  [G: k• = 2. Using the 

SchrSdinger model for r, one can verify that (g, 1) �9 w -- w ~ as representations 

of G1. It follows that gTC(G~,X) = 7r X'). Applying Proposition 1.2 and 

Theorem 5.2 now gives the statements. I 

If m _> 4n + 2 and the residual characteristic of k is odd, then Howe duality 

does not hold for ~2. If m _> 4n + 2, i.e., if the Witt  indices of X and X I are 

at least 2n, so that  X and Y and X ~ and Y lie in the stable range, then by 
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[MVW], Irr(G1) = TC(G1,X) = 7"r Thus, in this case, if the residual 

characteristic of k is odd, then by Lemma 6.1 Howe duality does not hold for f~. 

If m _< 2n and the residual characteristic of k is odd, then Strong Howe duality 

for f~ can be expected to hold. It is conjectured that  if m _< 2n then TO(G1, X) N 

TO(G1, X ~) = 0. By the lemma, if this conjecture is true and if the residual 

characteristic of k is odd, then Strong Howe duality for ~ holds. This conjecture, 

called the theta dichotomy, has been partly proven in the case of unitary groups 

in [HKS]. See also [KR]. 

If 2n < m < 4n+2 then present results or conjectures do not seem to determine 

whether 7r X)  A TO(G1, X' )  = 0. It is conjectured that  if m > 2n then 

7r X ) U  R(G1,X ' )  = Irr(G1). Again, see [HKS]. However, this conjecture is 

not strong enough to settle the question. Note that  if for some m0, TO(G1, Xmo)N 

X '  TO(G1, mo) r 0 then Ti(G1,Xm) N R ( G 1 , X ' )  r 0 for all m _> m0. This follows 

from R(Gl ,Zmo)  C R(G1,Xm) and TC(Gl,Z'mo ) C 7"r for m _> m0, 

which is called persistence in [HKS]. Thus, if the residual characteristic of k is 

odd and TO(G1, Xmo) n R(G1, X ' o )  r 0, then by Lemma 6.1 Howe duality does 

not hold for f / fo r  m _> m0. 

Finally, we mention that  Proposition 1.2 could be used to prove that  strong 

Howe duality holds for f~ when G ~ G', m is odd and the residual characteristic 

of k is odd. Let Irro(G') be the set of r E Irr(G') such that  the constituents of 

7r[a lie in Irro(G). There is a normal series from G' to G with Z/2Z quotients. 

Thus, repeated verification of the condition of Proposition 1.2 along with repeated 

application of Proposition 1.2 would prove strong Howe duality for fl with respect 

to Irro(G') and Irro(H). 
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